
Improving the Performance of Multi-hop Wireless Networks
using Frame Aggregation and Broadcast for TCP ACKs

Wonsoo Kim Hyrum K. Wright Scott M. Nettles
Wireless Networking and Communications Group (WNCG)

Department of Electrical and Computer Engineering
The University of Texas at Austin

1 University Station C0803, Austin, TX 78712-0240
Email: {wkim, hwright, nettles}@ece.utexas.edu

ABSTRACT
As data rates supported by the physical layer increase, PHY
and especially MAC overheads increasingly dominate the
throughput achievable by wireless networks. A promising
approach for reducing these overheads is to aggregate a num-
ber of frames together into a single transmission. The 802.11n
standard uses such an approach for unicast frames. We present
the design of a system that can aggregate both unicast and
broadcast frames. Further, the system can classify TCP ACK
segments so that they can be aggregated with TCP data flow-
ing in the opposite direction. A novel aspect of our work is
that we implement and validate our design not through sim-
ulation, but rather using our wireless node prototype, Hydra,
which supports a high performance PHY based on 802.11n.
Our validation shows significant improvements in through-
put for each kind of aggregation we support.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Net-
work Protocols; C.1.2 [Network Architecture and
Design]: Wireless Communication

General Terms
Design, Protocols
This material is based in part upon work supported by

the National Science Foundation under grants EIA-0322957,
CNS-0435307, and CNS-0626797, the Air Force Research
Lab under grant numbers FA8750-06-1-0091, and FA8750-
05-1-0246, the Office of Naval Research under grant number
N00014-05-1-0169, and the DARPA IT-MANET program,
Grant W911NF-07-1-0028.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 10-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

Keywords
transmission control protocol (TCP), frame aggrega-
tion, 802.11n, wireless multi-hop networks

1. INTRODUCTION
As the demand for high data rates increases, wireless
networking systems are deploying broadband commu-
nication high-throughput technologies such as orthogo-
nal frequency division multiplexing (OFDM) and multi-
input multi-output (MIMO). These technologies allow
the data portions of frames to be transmitted at high
data rates, which decreases the time spent transmitting
data, but does not generally decrease the time spent on
a variety of overheads. These include the time spent
waiting to gain access to the transmission floor, ex-
changing control frames required by the MAC protocol,
and physical layer (PHY) headers. The result is that
these overheads begin to dominate performance even
when the PHY is capable of high data rates. In gen-
eral, this problem becomes more severe as rate increases
because the time to transmit the data decreases, but the
transmit time for most of the overheads does not. Simi-
larly, the effect of these overheads is more dominant for
short frames, such as those typically used for control,
than for longer ones.

One approach to reducing these overheads and thus
achieving the potential performance gains offered by
modern PHYs is to group (or aggregate) several frames
together into one transmission. This has two benefits:
one, it reduces the total number of transmissions, result-
ing in less time waiting for the floor and transmitting
control frames, and two, it reduces header overhead by
allowing several frames to share headers. As an example
of this approach, the IEEE 802.11n standard includes
several frame aggregation schemes to support high data
rates as part of its high throughput MAC design [8].

Most frame aggregation schemes require that frames
that are aggregated all be destined to the same receiver.
This approach neglects the fact that transmissions are
broadcast and a single transmission will potentially be



received by many receivers. A simple way of taking ad-
vantage of this is to aggregate broadcast frames along
with a group of unicast frames all destined for one re-
ceiver. Because broadcast frames do not require ac-
knowledgement, this can be done while still having a
single ACK for the unicast frames.

We expect TCP traffic to be important for wireless
networks and it can also benefit from frame aggregation.
The key observation is that TCP ACKs are small pack-
ets that flow in the opposite direction from the (typi-
cally) larger TCP data packets. Since TCP ACKs are
cumulative and thus carry redundant information, they
have lower reliability requirements than the data pack-
ets. We take advantage of this by treating TCP ACKs
as if they were broadcast frames and do not require
link-level acknowledgements. This allows the ACKs to
be aggregated with TCP data traveling in the opposite
direction, significantly reducing the cost of the TCP
ACKs. By allowing the MAC to investigate TCP head-
ers, our design breaks layering abstractions and thus is
a cross-layer algorithm.

We present a design, implementation, and perfor-
mance evaluation of three aggregation techniques: uni-
cast aggregation, broadcast aggregation, and TCP ACK
aggregation. Although our design is a general modifi-
cation of 802.11, our implementation is specifically for
our Hydra wireless node prototype [6], which supports
an 802.11n-based PHY, with OFDM and MIMO. Thus
our performance evaluation is based on a real opera-
tional wireless network, rather than simulation.

Our paper is organized as follows. Section 2 outlines
existing aggregation schemes. Section 3 details the de-
sign of our protocol, while Section 4 describes its imple-
mentation on the Hydra prototype. Sections 5 and 6,
presents our experimental setup and performance eval-
uation of our approach. We discuss our conclusions and
future enhancements in Section 7.

2. RELATED WORK
Despite the wide variety of physical layer approaches to
increasing wireless network throughput, MAC overhead
ultimately limits maximum achievable throughput [21].
Further, these limits have more impact for frames with
small data payloads and the impact increases as the rate
used for data increases. Frame aggregation can help to
address both the problem of short frames and of over-
head becoming dominant at high data rates. Here we
describe previous efforts to improve throughput using
frame aggregation.

To improve throughput, the IEEE 802.11n [8] high
throughput standard adopts two approaches to frame
aggregation: the aggregated MAC service data unit (A-
MSDU), and the aggregated MAC protocol data unit
(A-MPDU) [1]. A-MSDU aggregates packets from the
upper layer and adds a single MAC header and check-

sum. This scheme is effective when the MAC aggregates
many small user packets such as TCP ACKs or other
control oriented data. A-MPDU concatenates normal
802.11 MAC frames each having its own MAC header
and checksum. Each of these subframes is separated by
a MAC delimiter, which includes a length, checksum,
and delimiter signature. The MAC delimiter allows
a receiver to robustly separate each subframe, even in
the case where some errors occur in the individual sub-
frame. This approach has more overhead than the first,
but supports a block ACK scheme. Block ACKs allow
each subframe to be acknowledged separately, thus al-
lowing retransmission of only the subframes in error.
This approach will have an advantage with high error
rates. Kim et al. [12] evaluate the throughput of an
early variant of 802.11n frame aggregation as a func-
tion of payload size and physical data rate.

The 802.11n MAC also specifies a bi-directional data
transfer method that can reduce floor acquisition over-
head [1]. It is particularly useful for reducing the over-
head of a bi-directional stream of TCP data and ACKs.
When a node transmits a frame, instead of relinquish-
ing the floor when the transmission completes, the node
can grant the receiver permission for a reverse direc-
tion transmission destined for the original transmitter.
This approach allows both TCP data and ACKs to be
transmitted in turn. This saves a floor acquisition time
and the time to exchange a request-to-send (RTS) and
clear-to-send (CTS) if they are being used. However,
this method does not reduce the MAC and PHY header
overheads or the cost of link-level ACKs.

Skordoulis et al. [18] proposed a two-level frame ag-
gregation scheme that mixes 802.11n’s two aggregation
methods. In the first stage, the MAC aggregates user
packets from the upper layer into an A-MSDU with a
MAC header and checksum. Then, a series of these A-
MSDUs are concatenated into an A-MPDU with each
A-MSDU separated by a MAC delimiter. This scheme
increases the maximum aggregation size compared to
using A-MSDUs and reduces MAC header overheads
compared to using A-MPDUs. It allows the block ACK
scheme to be applied to the A-MSDUs.

Kim et al. [11] proposed a multi-layer scheme that
provides aggregation at both the MAC and PHY lay-
ers. The MAC aggregates multiple MAC frames into
an A-MPDU, and then the PHY aggregates a series
of A-MPDUs into a single physical frame. Within the
physical frame, an additional physical delimiter pre-
cedes each of the A-MPDUs. The physical delimiter
contains modulation and coding scheme information for
each A-MPDU, and thus allows each A-MPDU to be
transmitted at a different rate. Unlike the other existing
approaches, this scheme also supports multi-destination
aggregation because each A-MPDU can be addressed to
a different destination. To facilitate this, the protocol



employs a polling scheme so that frames sent to differ-
ent destinations can be acknowledged.

Sadeghi et al. [16] proposed the opportunistic auto-
rate (OAR) method, which uses frame aggregation to
take advantage of favorable channel conditions. When
the underlaying rate adaptation algorithm shows that
a frame can be sent at higher than base-rate, the MAC
attempts to aggregate frames so that the time spent
sending the frame at the higher rate equals the time that
would be the same as the time to send a single frame at
base-rate. This preserves the basic fairness capabilities
of the 802.11 MAC while taking advantage of higher
rates and the overhead reduction of frame aggregation.

There have been cross-layer approaches to improve
TCP performance by piggybacking small TCP ACKs
with link-level frames [14, 19, 20, 17]. Parsa et al. [14]
proposed the transport unaware link improvement pro-
tocol (TULIP) that provides a piggyback method which
transfers a TCP ACK with a link-level frame. Tourril-
hes [19] proposed PiggyData of which idea is to transmit
PiggyData ACK, a link-level acknowledgement with a
flag indicating status of transmit queue, as a response
of TCP data. Setting the flag to one means that a TCP
ACK is followed after SIFS interval. Xiao [20] suggested
a piggyback mechanism which allows the MAC to pig-
gyback a link-level acknowledgement with a TCP ACK
in a single frame immediately after the node receives
TCP data. Our scheme differs from these approaches
in that these do not reduce the MAC and PHY header
overheads or the cost of link-level ACKs.

Scalia et al. [17] suggested PiggyCode which allows
the MAC to combine TCP data with TCP ACK by
using network coding technology. This approach can
reduce the MAC and PHY header overheads for TCP
ACKs, similar to our approach. However, the Piggy-
Code requires additional header to encode and decode
packets, and it allows only packets of different types to
be coded together, which restricts transmitting a single
TCP data and TCP ACK at a time.

3. DESIGN
Our design incrementally extends the familiar IEEE
802.11 distributed coordination function (DCF) MAC
protocol [7] to support frame aggregation. This addi-
tion requires modest changes to the PHY frame format,
demonstrating one of the cross-layer aspects of our de-
sign. Extensions include support for unicast aggrega-
tion, broadcast aggregation, and link-level classification
of TCP ACKs as broadcast frames.

3.1 Unicast Aggregation
The 802.11 standard includes significant overheads when
transmitting a single frame, as shown in Table 3 and 4.
These overheads include gaining access to the floor,
PHY and MAC header overheads, and control frame

PHY
information

Unicast
Rate/Length U1 U2 UN...

PHY Header

Figure 1: Unicast Aggregation Format

PHY
information

Broadcast
Rate/Length

Unicast
Rate/Length B1 B2 BN U1 UNU2... ...

PHY Header

Figure 2: Broadcast Aggregation Format

overheads for RTS, CTS, and ACK frames. Unicast ag-
gregation reduces the impact of this overhead by com-
bining frames being transmitted to the same destina-
tion, similar to what the IEEE 802.11 standard de-
scribes. In addition to reducing header overheads, ag-
gregating frames allows us to reduce the total number
of transmissions, and thus amortizes much of the per-
frame overhead over several frames.

Figure 1 is the format for supporting unicast aggrega-
tion, where UN denotes the N -th unicast subframe. The
aggregated frame consists of some PHY-oriented infor-
mation, such as training sequences, the rate and length
fields for the frame and then a series of unicast sub-
frames, all bound for the same destination. Because all
the unicast subframes are destined for the same node,
a single ACK can be used to acknowledge all the sub-
frames. Here, no changes are needed to the PHY.

3.2 Broadcast Aggregation
Broadcast frames are likely to be important in a multi-
hop wireless network, especially for control protocols.
For example, the dynamic source routing and ad-hoc
on-demand distance vector routing protocols use broad-
cast frames for route discovery and maintenance [9, 15].
The broadcast nature of radio frequency transmissions
means broadcast frames can not only be aggregated
with each other, but also with unicast frames. This
promises to significantly lower the impact of flooding-
based control protocols on data transport.

Figure 2 shows how our broadcast aggregation for-
mat extends the basic unicast format, where BN stands
for the N -th broadcast subframe. Our design modifies
the PHY header to add a rate and length field for the
broadcast subframes. The rate information enables us
to support different data rates for broadcast and unicast
subframes. The length information allows our protocol
to prepend a variable number of broadcast subframes
to a variable number of unicast subframes, all within
the same physical frame. Our design requires modify-
ing the PHY header to include rate and length infor-
mation to allow the receiving PHY to decode incom-
ing streams. The broadcast subframes are not acknowl-



edged and thus a single link-level ACK is still sufficient.
In addition, depending on queue status, the broadcast
aggregation scheme allows the MAC to aggregate broad-
cast or unicast frames only.

3.3 Treating TCP ACKs as Broadcasts
Many of the Internet’s most important applications use
TCP as the transport protocol. Thus, breaking layer
abstractions and optimizing for TCP becomes impor-
tant. Furthermore, TCP represents a general class of
protocols that support reliable transmission. TCP re-
lies upon a bi-directional traffic flow of TCP data and
TCP ACKs. Because the ACKs are small, the impact of
the fixed overhead becomes even more significant, mak-
ing them especially good candidates for aggregation.

TCP employs a cumulative acknowledgement mech-
anism. In this scheme, receipt of an ACK for packet
Pi, where i is the sequence number of the packet, im-
plies acknowledgement of all previous packets Pj , for
j ≤ i. Because of this redundancy, ACKs have less
need for reliable transmission than data. Indeed, some
TCP implementations intentionally drop some fraction
of the ACKs to reduce protocol overhead [2]. This
suggests that TCP ACKs could be transmitted with-
out link-level acknowledgement, in the same manner as
broadcast frames.

Our design breaks layer boundaries in an novel way
by classifying TCP ACKs as broadcast frames and then
aggregating them in the same manner as frames with
broadcast addresses. This can potentially cut the num-
ber of transmissions and thus floor acquisitions needed
by a TCP flow in half as well as save the significant
other overheads associated with transmitting the small
TCP ACK frames.

TCP ACK aggregation does not require a new frame
format. Instead, TCP ACKs are categorized as link-
level broadcasts and transmitted in the broadcast por-
tion of the frame. Although the TCP ACKs are trans-
mitted as a broadcast subframe and thus do not gen-
erate link-level ACKs, they still have unicast MAC ad-
dresses. When a node receives a TCP ACK not ad-
dressed to it, it drops the packet, rather than passing it
up the stack. This behavior is significant; if the packet
was passed up the stack to the IP layer, it would at-
tempt to deliver the packet, resulting in improper dupli-
cation of the TCP ACK. Thus, instead of broadcasting
TCP ACKs to the entire network, as a typical broadcast
packet, the ACKs are just broadcast within the range
of the nodes along the TCP stream’s path, just as they
would be if the ACKs were sent as unicast packets.

4. IMPLEMENTATION
We implemented this protocol using Hydra, our wireless
node/network prototype. In this section, we overview
Hydra and present the details of our implementation.

Linux 
protocol
stack

Click
modular 
router

GNU 
Radio 

USRP Board

TX/RX

USB 2.0 TX/RX

USRP Board

TX/RX

TX/RX

Figure 3: Block diagram of a Hydra node

4.1 Hydra Background
Hydra is a wireless network prototype being developed
at the University of Texas at Austin [6]. Hydra was
designed to allow both the PHY and the MAC to be
flexible and easy to modify. This design allows us to
experiment with cross-layer designs, such as the one
presented here, on realistic hardware and real RF chan-
nels rather than just in simulations.

Figure 3 presents a block diagram of the main com-
ponents of the Hydra including the RF front-end, the
PHY, and the MAC. The programmable RF front-end
is the universal software radio peripheral (USRP) [3],
which interfaces to the general purpose host through
a USB 2.0 connection. Figure 3 shows several USRPs
with multiple antennas. Using multiple antennas en-
ables us to exploit the MIMO capabilities of the pro-
tocols we implement. All other aspects of Hydra, the
PHY, MAC, and higher layers, run on a general purpose
computer running Linux. In addition to the MAC, we
implement ad-hoc routing using Click, which interfaces
with the Linux TCP stack [13]. This allows us to use
standard network software for experiments.

4.1.1 PHY
The Hydra physical layer essentially follows the IEEE
802.11n standard [8] and is implemented in the GNU
Radio framework [4]. This open-source software al-
lows developers to implement signal processing blocks
in C++ and then flexibly connect them together us-
ing Python as a glue language. The PHY uses BPSK,
QPSK, 16-QAM and 64-QAM as its modulation schemes
and 1

2 , 2
3 , 3

4 and 5
6 as the rates of its convolutional en-

coder. It supports various MIMO transmission modes
including beamforming, spatial multiplexing, and cyclic
delay diversity. For the experiments described here, we
only use cyclic delay diversity. In addition to the stan-
dard 802.11n features, the PHY includes a link adap-
tation algorithm using explicit feedback. Hydra’s data
rates are limited due to the bandwidth of the USB and



Table 1: Hydra PHY Details

System Bandwidth 1 MHz∗

Center Frequency 2.4− 2.5 GHz
Maximum TX Power 10 mW
Modulation BPSK, QPSK, 16-QAM, 64-QAM
Coding Bit-Interleaved Binary Convolutional
SISO Data Rates 0.65∗, 1.30∗, 1.95∗, 2.60∗, 3.90∗,

5.20∗, 5.85∗, 6.50∗ Mbps
MIMO Data Rates 2×, 3×+, and 4×+ SISO Data Rates
Diversity Schemes Cyclic Delay Diversity, Space-time

Coding, Spatial Mapping, Beamforming

∗ indicates non-standard values
+ indicates capabilities in development

processing delay created by the software implementa-
tion of the PHY. Thus the prototype supports physical
layer data rates 10 times less than the actual data rates
defined in the IEEE 802.11n standard. Table 1 summa-
rizes the features of the Hydra’s physical layer.

4.1.2 MAC
The MAC is written in C++ using the Click modular
router framework [13]. This software framework, devel-
oped at MIT, runs on a general purpose processor and
was originally created for building flexible and high per-
formance routers. Similar to GNU radio, Click allows
users to build packet processing elements in C++ and
connect them using its own glue language.

The Hydra MAC follows the IEEE 802.11 MAC stan-
dard for DCF with a RTS/CTS exchange. In addition,
the Hydra supports an explicit feedback scheme using
the RTS/CTS exchange and rate adaptation schemes
including receiver based auto rate (RBAR) and auto
rate fallback (ARF) [5, 10]. The present design and
experiments do not use the rate adaptation schemes.

4.2 Aggregation
We enhanced the Hydra MAC and PHY to support
unicast, broadcast, and TCP ACK aggregation as de-
scribed in Section 3. We describe the MAC subframe
format used by our aggregation schemes, the receive and
transmit processes, and finally details of the classifica-
tion of TCP ACKs as broadcasts.

4.2.1 Frame
A single physical frame includes a series of MAC sub-
frames. These subframes are embedded in the aggre-
gated frame shown in Figure 2. Figure 4 shows the for-
mat of each MAC subframe. This follows the standard
802.11 MAC format with the exception that we elim-
inated the address 4 field because we do not support
infrastructure networking. Each subframe includes a
MAC header containing general information: duration,
source and destination addresses, and length. Our ag-
gregation protocol only uses the duration field of the
first unicast subframe for virtual carrier sensing. How-

MPDU 
Header

MPDU 
Payload FCS PAD 

octets

Frame 
control

Duration/
ID Address 1 Address 2 Address 3 Length

2 2 6 6 6 2

Figure 4: The MAC subframe format.

ever, for the purpose of easy prototyping, all of the
subframes have the duration field. Each subframe in-
cludes a 2-byte length field. Finally all of the subframes
contain frame check sequence (FCS) and PAD octets.
Future work includes eliminating the redundant infor-
mation currently appearing in the headers.

Frames transmitted in the broadcast portion of the
frame can have a broadcast or unicast address but are
not acknowledged. On the other hand, the subframes
transmitted in the unicast portion require an ACK and
thus all must be addressed to the same destination.

4.2.2 The Receive Process
When receiving a frame, the PHY uses the broadcast
length and rate information to decode the broadcast
subframes and then the unicast length and rate infor-
mation to decode the unicast subframes. Once the PHY
completes decoding all the subframes, it sends the sub-
frames up to the MAC. When the MAC receives an
aggregated frame, it first processes the broadcast sub-
frames and then processes the unicast subframes. For
the broadcast portion, as soon as each subframe passes
the cyclic redundancy check (CRC), the MAC sends
the subframe to the next layer. Thus the broadcast
subframes do not suffer from higher loss probability
though they are aggregated with unicast subframes. For
the unicast subframes, the MAC checks destination ad-
dress and all of the CRCs, and, if they all pass, then
the MAC sends them up to the next layer and sends a
link-level ACK. Otherwise, all of the unicast subframes
are discarded. We could optimize by storing and apply-
ing CRCs to aggregates instead of individual subframes.
However, the current scheme has only a small overhead
and will allow us to extend our design to a block ACK
scheme like that of 802.11n.

4.2.3 The Transmit Process
On the transmit side, the MAC must assemble the ag-
gregated frames into the correct format. To achieve
this, we have two queues: One for broadcasts and one
for unicasts. The MAC first searches the broadcast
queue and assembles all the broadcast frames. Then the
MAC searches the unicast queue and gathers the uni-
cast frames being transmitted to the same destination
as the first frame in the unicast queue. Once completed,
the MAC aggregates the broadcast subframes followed



1

TCP Session
TCP DATA

TCP ACK
!

2 N

Figure 5: Linear topology with one TCP session

TCP Session 1

TCP Session 2

TCP DATA

TCP DATA

TCP ACK

TCP ACK
1 2

3

4

Figure 6: Star topology with two TCP sessions

by unicast subframes up to a parameterized maximum
aggregation size. Putting the broadcasts ahead of the
unicasts enables the broadcasts to be less sensitive to
changes in the wireless channel. This is because the
channel might change during transmission and the sub-
frames close to the PHY training sequences are less
likely to be corrupted by these changes. Once the frames
are assembled, the MAC hands the aggregated frame
down to the PHY along with the rate and length infor-
mation for the broadcast and unicast parts of the frame.
The entire transmit process triggers when the DCF of
the MAC acquires the floor.

4.2.4 TCP ACKs
The process above neglects TCP ACKs, which are spe-
cially handled when assigning packets to the unicast
or broadcast queues. We assign “pure” TCP ACKs to
the broadcast queue. We define “pure” TCP ACK seg-
ments to be those that do not contain any data and are
not part of connection set-up. Click provides a packet
classification mechanism, and our implementation uses
these classifiers to sort pure TCP ACKs from other uni-
cast frames and place them in the broadcast queue.

5. EXPERIMENTAL SETUP
For our experiments, we equipped our USRP frontends
to operate in the 2.4 GHz frequency band and we used a
transmission power of 7.7 mW which ensured a signal-
to-noise ratio (SNR) level of 25 dB for the node spacing
we used. This SNR did not allow reliable operation of
the rates that required 64-QAM. We used the cyclic-
diversity MIMO mode and thus transmitted a single
data stream from our two antenna systems. We ulti-
mately did experiments at 0.65, 1.30, 1.95, and 2.60 Mbps.
Higher rates would have shown greater improvements

Figure 7: Throughput vs. Aggregation size

for our techniques, but the rates used serve to validate
our concept.

We used three different topologies: 2- and 3-hop lin-
ear topologies as shown in Figure 5; and a star topol-
ogy as shown in Figure 6. Spacing between the nodes
is roughly 2.5 meters. Although Click provides sev-
eral ad-hoc routing protocols, because all of our nodes
are within transmission range of the others, they would
have not discovered any multi-hop routes. Instead we
used static routing to force the topologies in the figures.

To create UDP traffic we used an application that
simply sent UDP packets at a controllable rate. For
our experiments, we sent UDP packets that resulted
in 1140B MAC frames. For TCP, we used a one-way
file transfer to send a 0.2 Mbyte file. The maximum
segment size for TCP was set to 1357 bytes, resulting
in a MAC frame of 1464 bytes. TCP ACKs had MAC
frame sizes of 160 bytes.

6. EXPERIMENTAL RESULTS
We performed a series of experiments to study the im-
pact of frame aggregation for unicast frames, broadcast
frames, and TCP ACKs. To begin, we determined the
aggregation size to be used for subsequent experiments.
We then present performance results for each of our
techniques. We conclude with a more detailed analysis
that lets us gain some additional insight into how our
protocols operate.

6.1 Maximum Aggregation Size
For our experiments, we needed to set a maximum ag-
gregation size to be used in our further validation. We
determined this size by considering throughput as a
function of maximum frame size at various rates. For
higher data rates the fixed overhead tends to have a



Table 2: 2-Hop UDP Throughput

Data No Unicast Difference
Rate Aggregation Aggregation

0.65 Mbps 0.253 Mbps 0.273 Mbps 7.9%
1.3 Mbps 0.430 Mbps 0.481 Mbps 11.9%

greater impact on the throughput, so we expected the
improvement to be more significant for such rates.

To determine the maximum aggregation size, we used
our UDP application on a 1-hop network. Setting the
data interval (the time between transmissions) to 0.1 sec
created enough queueing that aggregation becomes ef-
fective and noticeable. Figure 7 shows the throughput
as a function of aggregation size for several rates. The
X-axis shows the maximum aggregation size in Kbytes
and the Y-axis shows the throughput in Mbps.

We observe that the throughput increases up to a
threshold value and then rapidly falls off to 0. For
higher data rates the throughput increase is steeper
than for low data rates, which reflects the expected in-
creased benefit of aggregation for higher rates.

The threshold value increases as the data rate in-
creases. However, if we consider physical samples (the
PHY uses “samples” with a variable number of bits to
actually transmit data) instead of bytes, we observed
a fixed threshold at about 120 Ksamples. This is con-
sistent in our indoor environment. However, we will
investigate the relationship between the maximum size
and the channel condition. For the 0.65 Mbps rate, us-
ing BPSK and a 1

2 coding rate, 120 Ksamples is 5 KB.
For the 1.3 Mbps rate, using QPSK and a 1

2 coding rate,
120 Ksamples is 11 KB. For the 1.95 Mbps rate, using
QPSK and a 3

4 coding rate, 120 Ksamples is 15 KB.
These values match the thresholds shown in Figure 7.
When we further increased the number of samples, sub-
frames transmitted later in the process had uncorrectable
errors and fail the CRC check resulting in the whole
frame being discarded. We believe that this is because
for longer frames, changes in the channel cause the
channel estimates being used to become out of date, but
we are investigating further to verify this theory. This
phenomena represents a good example of where a par-
tial/block ACK scheme might prove useful. In addition,
we leave the possibility of changing the aggregation size
as a function of rate to future work.

Based on these results, we chose 5 KB as the maxi-
mum aggregation size for all of the experiments below.
This size allows our frame aggregation scheme to use all
of the data rates provided by the PHY.

6.2 Unicast Aggregation
We designed this experiment to study the impact of

Figure 8: TCP Unicast Aggregation

unicast aggregation. Because aggregation saves MAC
and PHY overheads as well as transmissions, we expect
that throughput will be enhanced and that amount of
enhancement will increase as rate increases.

For UDP traffic, we used our UDP application over
a 2-hop network and fixed data rates of 0.65 Mbps and
1.3 Mbps. Table 2 presents throughput when the data
interval is set to 3 seconds. We observed a significant
improvement with aggregation and that, as expected,
this improvement increases with rate.

For TCP traffic, we used a one-way file transfer over
both 2- and 3-hop linear topologies. Figure 8 shows the
experimental results for TCP as we varied the data rate.
The X-axis shows the unicast data rate in Mbps and
the Y-axis shows the end-to-end throughput in Mbps.
Figure 8 demonstrates that throughput is improved for
both 2-hop and 3-hop networks when aggregation is ap-
plied. Again, as expected, the improvement increases as
data rate increases.

6.3 Broadcast Aggregation
We designed this experiment to assess the impact of
broadcast aggregation in the presence of flooding. By
combining the flooding frames with unicast frames, we
expect that the impact of flooding on performance will
be greatly reduced. For these experiments both unicast
and broadcast aggregation was enabled.

We used our UDP application over a 2-hop network
with a data interval of 3 seconds, and fixed data rates
of 0.65 Mbps and 1.3 Mbps. To simulate flooding, each
node generated broadcast frames at a fixed rate, which
we varied during the experiments. Figure 9 shows the
result of aggregation and no aggregation as a function
of the flooding interval. The X-axis shows the interval
of flooding frames in seconds and the Y-axis shows the
end-to-end throughput in Mbps.



Figure 9: 2-Hop UDP Flooding

Our results show that for both data rates the per-
formance gap between aggregation and no aggregation
increases as the flooding interval decreases. A small
flooding interval has a greater impact on the through-
put when no aggregation is used, indicating that aggre-
gation effectively reduces the overhead of flooding. We
also observed the expected trend with increasing rate.
If we compare this result with the unicast aggregation
result when there is no flooding (Table 2), we find that
for 0.65 Mbps with flooding at the 5 sec interval the
throughput is 0.26 Mbps while without flooding it is
0.27 Mbps, while for 1.3 Mbps flooding has a through-
put of 0.47 Mbps and without 0.48 Mbps. This degra-
dation comes from two sources: first, only the through-
put of the UDP application is considered; and second,
as the flooding interval decreases, the number of aggre-
gated frames containing only flooding frames increases.

6.4 TCP ACK Aggregation
We designed these experiments to study the effect of
treating TCP ACKs as broadcast frames, thus enabling
bi-directional aggregation. We study the impact of bi-
directional aggregation in a variety of configurations.
We start by measuring the throughput as a function of
the unicast frame data rate, when the rate used by the
broadcast subframes is fixed, followed by a measure-
ment when the broadcast and unicast subframes use
the same rate. We extend our experiments to 3-hop
linear and star topologies to study the impact of hop
count and network congestion. To study the impact of
queueing delay and enhancements that might be gained
by delaying frames to create greater opportunities for
aggregation, we experimented with a version of our sys-
tem that waited until it could aggregate 3 frames be-
fore transmission. To separate the impact of backward
and forward aggregation, we performed experiments for

Figure 10: TCP ACK Aggregation with a Fixed
Broadcast Rate

TCP ACK aggregation while disabling forward aggre-
gation. Finally, we present some detailed analysis that
lends greater insight into behavior of our system.

All experiments in this Subsection use a one-way file
transfer to generate TCP traffic. We use the abbrevia-
tion BA to denote broadcast aggregation results, UA for
only unicast aggregation, and NA for no aggregation.

6.4.1 2-hop Networks
We designed these experiments to compare TCP per-
formance between BA and UA over a 2-hop network by
studying throughput as a function of PHY data rate. In
the first experiment, we varied the rate of the unicast
part of the frame, but fixed the rate of the broadcast
part of the frame. In the second experiment, the broad-
cast and unicast subframes have the same rate.

Figure 10 shows the results for BA when using the
fixed data rates 0.65 Mbps, 1.3 Mbps, and 2.6 Mbps
for the broadcast TCP ACKs, and for UA. The X-axis
shows the unicast data rate measured in Mbps and the
Y-axis shows the end-to-end throughput in Mbps. The
value in parenthesis is the fixed rate used for the broad-
cast subframes.

When the MAC broadcasts TCP ACKs at 0.65 Mbps,
we saw that BA shows some improvement over UA at
the unicast rate 0.65 Mbps, but that as the unicast rate
increases, the throughput of BA falls off. As the unicast
rate goes up, the time spent transmitting the broadcast
ACK at 0.65 Mbps increasingly dominates, causing this
effect. When TCP ACKs are broadcast at 1.3 Mbps,
we observe that BA outperforms UA up to the uni-
cast rate of 1.3 Mbps, and afterwards BA achieves per-
formance similar to UA. BA using 1.3 Mbps becomes
more effective because for high data rates the impact
of aggregation becomes more significant. When TCP



Figure 11: 2-hop TCP ACK aggregation

ACKs are broadcast at 2.6 Mbps, we observe that BA
always outperforms UA over the range of rates used in
our experiments, for the same reasons we have already
mentioned.

Figure 11 shows similar results when the broadcast
TCP ACKs use the same data rate as the unicast sub-
frames. In this case BA always outperforms UA. Com-
paring BA with UA, the maximum throughput per-
formance gap is 10%. (Also, improvements exist at
0.65 Mbps, but are hard to see at the scale used in the
graph.) This is because BA can aggregate more sub-
frames at the relay nodes both reducing header over-
head and the number of transmissions. We also include
the no aggregation results to show that both BA and
UA provide significant improvements over not doing
any aggregation, as expected. Because it provided con-
sistently better performance, we use this version with
broadcast and unicast frames at the same rate for all
subsequent experiments.

6.4.2 3-hop Linear and Star Networks
We designed these experiments to study the perfor-
mance of our system with more complex topologies,
such as when more relay nodes become involved or when
the network becomes congested. We expected that BA
would show an enhancement over UA due to increased
hop count and that network congestion would increase
the ratio of aggregation. In a star topology, we expected
more congestion because the central node would be a
bottleneck for the TCP streams. More congestion re-
sults in longer queues which provides more chances for
aggregation. In a 3-hop linear topology, we expected
that adding a relay node would increase the number of
nodes involved in aggregation of TCP data and ACKs,
improving the aggregation ratio.

We used two topologies: A 3-hop linear topology

Figure 12: TCP over more complex topologies

(Figure 5) having more hops and a star topology (Fig-
ure 6) having more congestion. The star topology cre-
ates two TCP sessions, with each session over 2 hops.
For the star topology, we measured the worst-case through-
put over the paths, i.e., the throughput for the slow-
est session. For this experiment, broadcast ACKs were
transmitted at the unicast rate. Figure 12 shows the
throughput as a function of data rate. The X-axis shows
data rate measured in Mbps and the Y-axis shows the
end-to-end throughput in Mbps.

As expected, BA shows more improvement in both
scenarios. For the 3-hop linear topology, the maximum
throughput gap between BA and UA is 12.2% as com-
pared to 10% for 2-hop. As more relay nodes become
involved in bi-directional aggregation, the overall aggre-
gation ratio increases. For the star topology, the maxi-
mum throughput gap is 11%, because network conges-
tion leads to longer queues. This allows BA to have
more aggregation opportunities than UA, because UA
only supports aggregating frames being transmitted to
the same receiver. Note, we also show the no aggre-
gation result for 3-hop, which has the expected perfor-
mance. In addition, we expect that, for star topologies,
the result of no aggregation will be worse than that of
UA and BA. This is clear because the no aggregation
does not support any methods reducing the cost of TCP
ACKs.

6.4.3 Delayed Aggregation
We designed this experiment to study the impact of the
queueing delay on our aggregation approach. We expect
that longer queues will result in more opportunities for
aggregation.

We created a delayed version of BA, delayed BA (DBA),
which forces relay nodes to pause transmission until
they have 3 frames in their queues. We choose 3 frames



Figure 13: TCP for Delayed BA

because that is the maximum number of TCP data
frames that can be aggregated, given the parameters
of our experiments. Figure 13 shows the performance
comparison between BA and DBA over both of 2-hop
and 3-hop linear topologies as a function of rate. The
X-axis shows the unicast data rate in Mbps and the
Y-axis shows the end-to-end throughput in Mbps.

We observed that the performance of BA and DBA is
similar at the unicast rates of 0.65 Mbps and 1.3 Mbps
and at higher rates DBA outperforms BA slightly. The
maximum gap is 2% and 4% for 2-hop and 3-hop net-
works respectively. This improvement is smaller than
we expected and we are investigating further.

6.4.4 Forward vs. Backward Aggregation
We defined “forward aggregation” to mean the aggrega-
tion of packets going in the same direction, and “back-
ward aggregation” to mean the aggregation of packets
flowing in the opposite direction, such as TCP data and
ACKs. We designed this experiment to gain some in-
sight about where the benefits from backward aggrega-
tion occur. We do this by disabling forward aggregation
so that the benefit from aggregation comes purely from
combining TCP data and ACKs into one transmission.

For this experiment, the 3-hop linear topology was
used. Figure 14 compares the performance of no ag-
gregation, BA, and BA without forward aggregation.
The X-axis shows the data rate in Mbps and the Y-axis
shows the end-to-end throughput in Mbps.

The results show that the performance gap between
BA and BA with disabled forward aggregation becomes
bigger as the unicast data rate increases. This means
that backward and forward aggregation affect the through-
put equally when low data rates are used. As the data
rate increases, forward aggregation has a greater im-
pact on the throughput. This probably reflects a limit

Figure 14: TCP without forward aggregation

in the level of bi-directional aggregation possible in our
benchmarks.

6.4.5 Detailed Analysis
Although the results shown thus far show the basic per-
formance characteristics of our system, a more detailed
analysis can give us more insight about the performance
of DBA, BA, UA, and NA. We start by focusing on the
impact of bi-directional aggregation in a 2-hop network
and then we extend our analysis to star and 3-hop net-
works to gain insight about the impact of the topology
on performance.

2-hop Linear Topology.
Table 3 shows the average frame size (in bytes), the
number of transmissions (TX) (as a percentage of the no
aggregation number), and the size overhead (as a per-
centage of the MAC and PHY header size compared to
total size) of NA, UA, BA and DBA in a 2-hop network.
The table shows that the average frame size increases
dramatically when we introduce aggregation and some-
what more modestly when broadcast and then delayed
aggregation are introduced. A maximum TCP data
frame is 1464B and a TCP ACK is 160B the average
of which is 812B. This is close to the average NA size,
suggesting that some TCP data segments are smaller
than maximum size. On the other hand the average
size for UA is 2662B which divided by 812B is 3.3. For
the parameters we are using, 3 maximum size TCP data
segments will fit in one frame, which suggests that for
UA we are typically fully aggregating data frames and
perhaps sometime sending as many as 4 ACKs at once.
Thus TCP effectively expands its window to take advan-
tage of aggregation. BA and DBA both achieve slightly
better aggregation as expected. The results for trans-
missions bear this analysis out, since aggregating 3 data



Table 3: 2-hop Relay Node Detail
NA UA BA DBA

Frame Size 765B 2662B 2727B 3477B
Total TXs 100% 33.7% 26.7% 21.1%

Size overhead 15.1% 6.83% 6.55% 5.8%

or 3 ACK frames in each transmission would result in
one-third the number of transmissions, exactly as seen.
Again, the greater aggregation of BA and DBA result
in somewhat fewer transmissions compared to UA. Fi-
nally, the differences in header overheads reflect these
same trends as we would expect.

Table 4 presents the average percentage time over-
head as a function of the data rate. The overhead in-
cludes the transmission time for MAC and PHY head-
ers, the transmission time for control frames, backoff,
DCF interframe space (DIFS), and short interframe space
(SIFS). This table shows very clearly how at higher data
rates overhead begins to dominate. In the no aggrega-
tion case it goes from 22.4% to 52.1%. It also shows that
aggregation is very effective in reducing this overhead.

Star Topology vs. 2-hop Linear Topology.
Table 5 shows the average frame size in both 2-hop and
star topologies. The frame size is almost constant for
UA, reflecting the fact that only frames with the same
destination can be aggregated and thus there are no
greater possibilities for aggregation in the star topology
than in the 2-hop one. For BA there is a substantial in-
crease for the star because TCP ACKs destined for node
3 and 4 can be aggregated together and with TCP data
frames destined for node 1. Table 6, shows the size
overheads for the two topologies. It shows a similar
trend as frame size. Table 7 shows the number of trans-
missions relative to the no aggregation case for the two
topologies. It shows similar trends as the previous two
results, although UA shows fewer transmissions for the
star topology. This is because UA suffers from queue
overflow, which results in sending fewer packets for a
given file size. On the other hand, for NA, we multiply
the total number of transmissions by two because we
do not have the NA results for the star topology. These
decrease the transmission percentage for UA.

Table 4: 2-Hop Relay Node Time Overhead
Data Rate NA UA BA DBA

0.65 22.4% 6.7% 5.8% 5.2%
1.3 34.9% 14.3% 11.4% 10.3%
1.95 44.4% 19.3% 15.5% 14.3%
2.6 52.1% 24.8% 19.9% 17.7%

Table 5: Relay Node Frame Size
2-hop Star

UA 2662B 2651B
BA 2727B 3432B

Table 6: Relay Node Size Overhead
2-hop Star

UA 6.83% 6.83%
BA 6.55% 5.93%

3-hop Linear Topology vs. 2-hop Linear Topology.
Table 8 shows the frame size of the TCP server, relay
node(s), and TCP client in both 2-hop and 3-hop net-
works. For both BA and UA, the frame sizes at the
TCP server and client imply that the server transmits
an aggregated frame containing two (2928B) or three
(4392B) subframes and, as a response, the client sends
two (320B) or three (480B) ACKs back to the server.

The data shows that, at the relay nodes, the aver-
age frame size in a 2-hop network is bigger than that
in a 3-hop network. This is because the TCP data and
TCP ACK transmission rates decrease for 3-hops. The
reduced transmission rates affect the average sizes at
the TCP server and client. The average frame sizes of
BA at the TCP server and client are 3488B and 447B
in a 2-hop network respectively. Meanwhile, the aver-
age frame size decreases to 3313B and 430B in a 3-hop
network. These reduced sizes make the average frame
size at the relay nodes decrease. However, it is useful
to compare the sizes at the relay nodes. For 2 hops, the
difference between UA and BA is 65B, while for 3 hops
at relay1 it is 154B and at relay2 it is 446B. Thus we
see a significant increase in the amount of aggregation
as the number of hops increases.

7. CONCLUSIONS AND FUTURE WORK
We presented a design for unicast aggregation, broad-
cast aggregation, and for treating TCP ACKs as broad-
casts so as to enable them to be aggregated. We used
our wireless networking prototype, Hydra, to implement
our aggregation schemes and to perform a series of ex-
periments to validate our design. The performance re-
sults are promising for all approaches.

Possible future work falls broadly into two categories,

Table 7: Relay Node Transmission Percentages
2-hop Star

UA 33.7% 30.7%
BA 26.7% 22.5%



Table 8: Frame Size at all Nodes for 2-hop and 3-hop Networks
Server (2+) Relay (2) Client (2) Server (3) Relay1 (3) Relay2 (3) Client (3)

UA 3897 2662 463 3451 2384 2224 443
BA 3488 2727 447 3313 2538 2670 430

+ indicates the number of hops.

experimental work and protocol development and val-
idation. Experimentally, we plan to perform further
experiments when both TCP and standard broadcast
frames are generated. In addition, to verify the impact
of treating TCP ACKs as broadcasts on performance,
we will extend our experiments to the large-scale net-
works using simulation.

In terms of protocols, we plan to extend our system to
make better use of frame aggregation by implementing
a block ACK scheme. As an extension to our existing
rate adaptation protocol, we plan to design and imple-
ment a rate-adaptive frame aggregation scheme. By
adapting rates for broadcasts and unicasts, we antici-
pate further performance improvements. In addition,
we will implement a delayed ACK scheme that allows
the MAC to aggregate unicast subframes which have
different destination addresses.

8. REFERENCES
[1] Enhanced Wireless Consortium. HT MAC

Specification v1.24, 2006.
[2] S. Floyd and T. Henderson. The NewReno

Modification to TCP’s Fast Recovery Algorithm.
IETF RFC 2582, Apr. 1999.

[3] GNU Radio: Universal Software Radio Peripheral.
http://www.gnuradio.org/trac/wiki/USRP.

[4] GNU Software Radio.
http://www.gnu.org/software/gnuradio/.

[5] G. Holland, N. H. Vaidya, and P. Bahl. A
Rate-Adaptive MAC protocol for Multi-Hop
Wireless Networks. In Proceedings of ACM
MOBICOM, July 2001.

[6] Hydra – A Wireless Multihop Testbed.
http://hydra.ece.utexas.edu/.

[7] IEEE 802.11 Working Group, Piscataway, NJ.
Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specification, 1997.

[8] IEEE 802.11n Working Group. Wireless LAN
Medium Access Control (MAC) and Physical
Layer (PHY) Specification-Draft 2.0:
Enhancements for Higher Throughput, Part 11
Standard ed., 2007.

[9] D. B. Johnson and D. A. Maltz. Dynamic Source
Routing in Ad Hoc Wireless Networks. In
Proceedings of ACM SIGCOMM, Aug. 1996.

[10] A. Kamerman and L. Monteban. WaveLAN II: A
High-Performance Wireless LAN for the

Unlicensed Band. Bell Labs Technical Journal,
2(3):118–133, 1997.

[11] S. Kim, S. Choi, Y. Kim, and K. Jang. MCCA: A
High-Throughput MAC Strategy for
Next-Generation WLANs. IEEE Wireless
Communications, 15(1):32–39, Feb 2008.

[12] Y. Kim, S. Choi, K. Jang, and H. Hwang.
Throughput Enhancement of IEEE 802.11 WLAN
via Frame Aggregation. In Proceedings of IEEE
VTC, Sept. 2004.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The Click Modular Router.
ACM Transactions on Computer Systems,
18(3):263–297, 2000.

[14] C. Parsa and J. J. Garcia-Luna-Aceves.
Improving TCP Performance over Wireless
Networks at the Link Layer. Mobile Networks and
Applications, 5(1):57–71, Mar. 2000.

[15] C. Perkins, E. Royer, and S. Das. Ad-hoc
On-demand Distance Vector (AODV) Routing. In
Proceedings of IEEE WMCSA, Feb. 1999.

[16] B. Sadeghi, V. Kanodia, A. Sabharwal, and
E. Knightly. Opportunistic Media Access for
Multirate Ad hoc Networks. In Proceedings of
ACM MOBICOM, Sept. 2002.

[17] L. Scalia, F. Soldo, and M. Gerla. PiggyCode: a
MAC Layer Network Coding Scheme to improve
TCP Performance over Wireless Networks. In
Proceedings of IEEE GLOBECOM, Nov. 2007.

[18] D. Skordoulis, Q. Ni, H.-H. Chen, A. P. Stephens,
C. Liu, and A. Jamalipour. IEEE 802.11n MAC
Frame Aggregation Mechanisms for
Next-Generation High-Throughput WLANs.
IEEE Wireless Communications, 15(1):40–47, Feb
2008.

[19] J. Tourrilhes. PiggyData: Reducing CSMA/CA
Collisions for Multimedia and TCP Connections.
In Proceedings of IEEE VTC, Sept. 1999.

[20] Y. Xiao. Concatenation and Piggyback
Mechanisms for the IEEE 802.11 MAC. In
Proceedings of IEEE WCNC, Mar. 2004.

[21] Y. Xiao. IEEE 802.11n: Enhancements for Higher
Throughput in Wireless LANs. IEEE Wireless
Communications, 12(6):82–91, Dec. 2005.


