
Release Engineering Processes, Models, and Metrics

Hyrum K. Wright
Empirical Software Engineering Laboratory

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, Texas 78712
hyrum_wright@mail.utexas.edu

ABSTRACT
No matter the development process or methodology, a soft-
ware product must ultimately be released to a user in a
readily consumable form. Different software products, from
desktop applications to web services, may require different
release processes, but each process must produce an arti-
fact which meets an expected level of quality, and is rela-
tively bug-free. We describe current research to model and
quantify existing release processes, and an effort to prescribe
improvements to those processes.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—software pro-
cess models; D.2.7 [Software Engineering]: Distribution,
Maintenance, Enhancement—release creation and distribu-
tion

General Terms
Management, Standardization

Keywords
release engineering, release management, software processes

1. INTRODUCTION
A software release is the most prominent aspect of a soft-

ware deployment. Whether a web service, an open source
project, a commercial system, or an internally developed ap-
plication, unreleased software is nonexistent software. Of-
ten, significant external resources, such as marketing cam-
paigns, are dependent upon a successful release process.
Development teams must ensure they have a sufficiently
high-quality release process, to create low-fault and high-
frequency releases.

Often, the release process changes as a organization grows.
A small startup company will release software much differ-
ently than a multinational vendor. While developers and
architects focus their energies on the design of the software
itself, the release process tends to gradually evolve, with
very little comprehensive design. Instead, companies and
projects add release engineering techniques as required, with
little forethought or structured design of the process.

Copyright is held by the author/owner(s).
ESEC/FSE Doctoral Symposium ’09, Aug. 25, 2009, Amsterdam. The
Netherlands.
ACM 978-1-60558-731-8/09/08.

The primary goal of this research is to develop techniques,
methods, metrics and processes whereby the release engi-
neering process can be quantitatively measured, reasoned
about, and improved. Such techniques will benefit the soft-
ware industry by reducing release process overhead, and im-
proving the quality of the release artifact. This paper gives
a brief background of release engineering as a practice, the
existing research in this area, and how we intend to proceed
toward our goals.

2. BACKGROUND
Release engineering is the part of the software engineer-

ing process during which the release artifact, usually an ex-
ecutable, installer, library or source code package, is pro-
duced. In traditional software development methodologies,
such as the spiral or waterfall models, release engineering
comes as part of the deployment and maintenance phases [1,
8]. Many proprietary and open source software projects em-
ploy dedicated release teams which are tasked with building
the final shipping product, very literally “engineering the
release.”

For many development teams, release engineering can usu-
ally be broken into several phases: stabilization, validation,
and publication. During the entire process, the release is
overseen by one or many release engineers. This individual
or team may coordinate release activities, determine sched-
ule and make binding decisions regarding releases. Depend-
ing on the size of the development team, release management
may be a dedicated assignment, or may rotate among team
members.

2.1 Related Work
Despite the ubiquitous nature of the release process in the

software development cycle, very little research has focused
primarily on the release processes itself. Some of the existing
literature looks at the distribution and maintenance of the
release artifacts, but not the process involved in creating
them.

The open source world has provided a particularly fertile
source of data for examining release processes. Erenkrantz
outlined release processes in several open source projects,
but the work is quite dated and each of the projects surveyed
has changed their process in the interim [3]. Michlmayr ex-
amined release engineering processes in open source projects,
and problems that the open environment presents to the pro-
cess [6, 7]. Additional researchers have also examined how
release managers fit into the social fabric of open source
projects [2].

27



Other authors have looked at where the release process
fits in the software development cycle. The problem of dis-
tributing the release artifact is addressed by van der Hoek,
et. al. [9], but the work is more aimed at dependency man-
agement of releases. Other work describes the Software
Dock [4], a system for configuration, deployment and main-
tenance of software installations.

3. GOALS AND STATUS
Part of this work will be simply defining the scope of the

release engineering process, and how that applies in differ-
ent organizations. Many organizations task a “release team”
with managing release engineering within the project, but
the charter of such a team can vary widely. While the needs
of every organization are different, many commonalities exist
and creating a flexible, yet useful, description of the process
is an important part of our work.

Our primary goal, though, is to observe and model exist-
ing release processes, and to eventually prescribe changes to
those processes in an effort to improve them. Metrics exist
for nearly every other aspect of the software engineering cy-
cle. These metrics help researchers and developers alike, by
quantifying and describing the process, so they can then be
improved upon [10]. We aim to introduce a similar frame-
work for use with release engineering.

In previous work on this subject, we examined details of
the Subversion open source project’s release cycle for version
1.5 [11]. We hope to expand this work to include lessons
learned from other commercial and open source projects,
particularly the problems they have encountered in their
own release engineering processes, and how they addressed
(or did not address) them.

We are currently working on creating a uniform database
of release information for a variety of open source projects.
This is in a similar spirit as the FLOSSmole data min-
ing project [5], but focuses on only the release information
for the selected projects. In the process of creating this
database, we are also creating rough methods of normal-
izing release information to allow inter-project comparison.
In addition, we are developing tools to support the mainte-
nance and improvement of the collected data.

Using this data, and our proposed models and metrics,
we will then prescribe improvements to the projects’ release
processes. This approach is not limited to just open source
projects, and we also plan on examining selected proprietary
release engineering practices.

We also plan to examine the current tooling infrastruc-
ture surrounding release engineering. Anecdotal evidence
seems to suggest that what tools exist are homegrown, and
not uniform throughout the software industry. These tools
could help standardize release artifact creation and nota-
tion, making releases and release histories easier to reason
about. By developing a common tool infrastructure, release
engineering processes could be streamlined and improved.

4. CONCLUSION
Release engineering for most teams is, at best, an ad hoc,

homegrown conglomeration of scripts, tests, and processes
which have grown up over the course of many years. Tool
support is often hit-or-miss, and little research which ad-
dresses the issues faced by teams creating the large software
projects common in development environments today. In

addition, very few standards exist for release engineering
processes and artifacts. We hope to address these issues
through the above outlined research.

Every software team must eventually release the end re-
sult of its labors. The release process is a critical part of
the software development cycle, and by better understand-
ing the release process, software engineers, as well as de-
velopment teams, will be better able to create high-quality
software releases.

5. REFERENCES
[1] B. W. Boehm. A spiral model of software development

and enhancement. Computer, 21(5):61–72, 1988.

[2] K. Crowston and J. Howison. The social structure of
free and open source software development. First
Monday, 10(2), 2005.

[3] J. R. Erenkrantz. Release Management Within Open
Source Projects. In Proceedings of the ICSE 3rd
Workshop on Open Source Software Engineering, May
2003.

[4] R. Hall, D. Heimbigner, A. van der Hoek, and
A. Wolf. The Software Dock: A Distributed,
Agent-based Software Deployment System. Technical
Report CU-CS-832-97, University of Colorado, Dept.
of Computer Science, February 1997.

[5] J. Howison, M. Conklin, and K. Crowston.
FLOSSmole: A Collaborative Repository for FLOSS
Research Data and Analyses. International Journal of
Information Technology and Web Engineering,
1(3):17–26, 2006.

[6] M. Michlmayr. Quality Improvement in Volunteer
Free Software Projects: Exploring the Impact of
Release Management. In Proceedings of the First
International Conference on Open Source Systems,
pages 309–10, 2005.

[7] M. Michlmayr, F. Hunt, and D. Probert. Release
Management in Free Software Projects: Practices and
Problems. International Federation for Information
Processing, 234:295, 2007.

[8] W. W. Royce. Managing the development of large
software systems: concepts and techniques. In
Proceedings of the 9th International Conference on
Software Engineering, pages 328–338. IEEE Computer
Society Press Los Alamitos, CA, USA, 1987.

[9] A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L.
Wolf. Software release management. ACM SIGSOFT
Software Engineering Notes, 22(6):159–175, 1997.

[10] A. L. Wolf and D. S. Rosenblum. A study in software
process data capture and analysis. In Second
International Conference on the Software Process,
pages 115–124, 1993.

[11] H. K. Wright and D. E. Perry. Subversion 1.5: A Case
Study in Open Source Release Mismanagement. In
Proceedings of the ICSE 2nd Emerging Trends in
FLOSS Research and Development Workshop, May
2009.

28


