
Copyright

by

Hyrum Kurt Wright

2012

The Dissertation Committee for Hyrum Kurt Wright
certifies that this is the approved version of the following dissertation:

Release Engineering Processes,

Their Faults and Failures

Committee:

Dewayne E. Perry, Supervisor

Randolph Bias

Christine Julien

Miryung Kim

Sarfraz Khurshid

Release Engineering Processes,

Their Faults and Failures

by

Hyrum Kurt Wright, B.S.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2012

Dedicated to my loving wife Heather and our children.

Acknowledgments

The work described herein is largely qualitative, and as such required

the assistance of a number of people. I am grateful firstly to the anonymous

research subjects who lent of their time and expertise to make this work pos-

sible, as well as their employers who consented to providing me with access to

them.

The collaboration and discussion with other researchers has also helped

shape this work. I am grateful to my advisor, Dr. Dewayne Perry, for the

many discussions regarding results and methodology, and to the remainder of

my committee, Dr. Christine Julien, Dr. Sarfraz Khurshid, Dr. Miryung Kim

and Dr. Randolph Bias for their insights and patience as I pursued this rather

unique line of research.

I am thankful to the members of the Apache Subversion development

community and Project Management Committee from whom I have learned

much, both socially and technically. Their patience with my early experiences

as the project release manager allowed the planted seed to germinate and

sprout.

Finally, I am grateful for my loving wife, Heather, who has supported

me in every step of the way, and for our four children: Hannah, Jonathan,

Charlotte, and Spencer. I could not have done this without each of you.

v

Release Engineering Processes,

Their Faults and Failures

Hyrum Kurt Wright, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Dewayne E. Perry

Release processes form an important, if overlooked, part of the complete

software development life cycle. Many organizations implement the roles of

release engineering and release management in different ways, with a wide

amount of variance within the software industry. Ill-designed processes can

lead to a higher number of software faults and costly delays. Failures in release

engineering can have negative implications, yet the causes of release process

failures are not well understood within in the software engineering research

community.

This dissertation addresses the questions of what the common release

process structure is, what the common failure modes are, and how organi-

zations recover from and prevent these failures. We address these questions

through a series of case studies with practicing release engineers at commercial

software companies. The live interviews with these individual companies pro-

vide insight into the state of the practice in release engineering today across a

broad spectrum of organization and software domains.

vi

The results of these studies indicate four areas of theory in release

engineering which future researchers can probe in more depth. These areas

center around process organization, social causes of release process failure, the

relationship between software architecture and the release process, and how

organizations attempt to improve release processes.

For practicing release engineers, these results show that most orga-

nizations would benefit from three primary improvements: increased process

automation, more modular software design, and improved organizational com-

munication and support of release engineering groups. By implementing these

improvements, software development companies and the release engineering

processes they support will avoid the most common process failures in this

critical phase of the software life cycle.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Background . 3

1.1.1 Description . 4

1.1.2 Context . 5

1.1.3 Consumers . 6

1.1.3.1 External Consumers 6

1.1.3.2 Internal Consumers 6

1.1.4 Release Timing Models 7

1.1.4.1 Time-based Releases 7

1.1.4.2 Feature-based Releases 8

1.1.4.3 Hybrid Model 8

1.2 Definitions . 9

1.3 Personal Experience . 10

1.4 Motivation . 10

1.5 Summary of Contributions . 11

Chapter 2. Related Work 12

2.1 Release Engineering . 12

2.1.1 Release Timing . 14

2.1.2 Deployment . 15

2.1.3 Maintenance . 16

viii

2.2 Relationship to Other Disciplines 16

2.3 Limitations of Existing Research 17

Chapter 3. Initial Study 18

3.1 Subversion Release Process . 19

3.1.1 Community Roles . 19

3.1.1.1 Release manager 20

3.1.1.2 Committers . 20

3.1.1.3 Third-party distributors 20

3.1.2 Versioning Guidelines 21

3.1.3 Release Procedure . 22

3.2 Releasing Subversion 1.5.0 . 25

3.2.1 Merge tracking . 25

3.2.2 From branch to release 27

3.3 Discussion . 29

3.3.1 Learn from the past . 29

3.3.2 Follow the process . 30

3.3.3 Time-based releases . 31

3.3.4 Defining releases independent of features 32

3.4 Questions Raised . 34

Chapter 4. Study Design and Methodology 35

4.1 Data Source Selection . 35

4.1.1 Open Source vs. Proprietary Data 36

4.1.2 Subject Selection . 38

4.2 Interview Format . 40

4.3 Analysis . 41

Chapter 5. Case Descriptions 43

5.A RJD . 44

5.A.1 Product Description . 45

5.A.2 Release Timing . 46

5.A.3 Release Team . 47

ix

5.A.4 Release Cycle . 47

5.A.5 Pre-release Testing . 48

5.A.6 Distribution . 49

5.A.7 Release Tools . 49

5.A.8 Changes in the Release Process 50

5.A.9 Process Failures . 50

5.A.10Summary . 51

5.B Connect . 51

5.B.1 Product Description . 52

5.B.2 Release Steps . 52

5.B.3 Release Cycle . 53

5.B.4 Tooling . 54

5.B.5 Release Process Failures and Deficiencies 55

5.B.6 Summary . 57

5.C ForRent . 59

5.C.1 Product Description . 59

5.C.2 Release process . 60

5.C.3 Diverse release processes 61

5.C.4 Process Automation . 62

5.C.5 Process Failures . 62

5.C.6 Summary . 64

5.D NetOS . 65

5.D.1 Product Description . 65

5.D.2 Release Team . 66

5.D.3 Release Cycle . 67

5.D.4 Pre-release Testing . 68

5.D.5 Distribution . 68

5.D.6 Artifact Creation . 69

5.D.7 Release Tools . 70

5.D.8 Changes in the Release Process 71

5.D.9 Weaknesses . 71

5.D.9.1 Storage . 71

x

5.D.9.2 Staffing . 73

5.D.9.3 Social Issues . 73

5.D.9.4 Software Architecture 74

5.D.10Example of Anomalous Release Experience 74

5.D.11Summary . 75

5.E Publish . 76

5.E.1 Product Description . 76

5.E.2 Release Processes . 77

5.E.3 Tools . 78

5.E.4 Testing . 79

5.E.5 Challenge with the Process Tools 79

5.E.6 Observations . 80

5.E.6.1 Previous Experiences 81

5.E.7 Summary . 82

5.F ForRent Payments . 82

5.F.1 Product Description . 83

5.F.2 Release Tools and Environments 83

5.F.3 Release Failures . 84

5.F.4 Summary . 85

5.G WebCan . 86

5.G.1 Release Process . 86

5.G.2 Previous Experiences 87

5.G.2.1 Process Design 87

5.G.2.2 Causes of Faults 88

5.G.3 Summary . 89

5.H Subversion Binary Packages 89

5.H.1 Release Process . 90

5.H.2 Process Automation . 91

5.H.3 Failures . 92

5.H.4 Summary . 93

5.I CodeBit . 94

5.I.1 Release Process and Artifacts 94

xi

5.I.2 Release Failures . 95

5.I.3 Attempts to Change the Architecture 97

5.I.4 Summary . 97

Chapter 6. Validity 99

6.1 Construct validity . 99

6.2 Internal validity . 100

6.3 External validity . 101

Chapter 7. Release Process Theories and Analysis 103

7.1 Observations . 103

7.1.1 Team Organization . 103

7.1.1.1 Team Structure 104

7.1.1.2 External Communication 105

7.1.1.3 Release Engineer Personalities 105

7.1.2 Software Domain . 106

7.1.3 Interactions Between Releasable Components 107

7.2 Theories of Release Engineering 108

7.2.1 Theory: The Structure of Release Processes 109

7.2.1.1 Identify Release Components 109

7.2.1.2 Prepare Release Schedule 110

7.2.1.3 Test Release Components 111

7.2.1.4 Create Release Artifacts 111

7.2.1.5 Test Release Artifacts 112

7.2.1.6 Distribute or Deploy Release Artifacts 113

7.2.1.7 Iterate During Maintenance 114

7.2.2 Theory: Causes of Release Engineering Failures 114

7.2.2.1 Social Causes 115

7.2.2.2 Automation and Tool Support 116

7.2.2.3 Process Complexity 117

7.2.3 Theory: Relationship Between Architecture and Process
Complexity . 118

7.2.4 Theory: Process Improvement 120

xii

Chapter 8. Conclusion 122

8.1 Contributions . 123

8.2 Future Work . 124

8.2.1 Formal Process Analysis 124

8.2.2 Process Standardization 125

8.3 Recommendations . 125

8.3.1 Improved Automation 126

8.3.2 Modular Process Design 127

8.3.3 Improved Organizational Support 127

Appendices 129

Appendix A. Pre-Interview Questionnaire 130

Appendix B. Sample Subject Solicitation Mail 132

Bibliography 134

xiii

List of Tables

3.1 Dates between Subversion releases 24

4.1 Use of open source as data sources in research papers 37

5.1 Case Descriptions . 44

7.1 Release Team Composition . 105

7.2 Cases and Theories Matrix . 108

7.3 Common Release Steps . 109

xiv

List of Figures

3.1 Subversion Release Process . 25

5.1 Upstream packages and downstream consumers of RJD 46

xv

Chapter 1

Introduction

“Software only has value when it is released,” proclaimed one of the

subjects interviewed for this dissertation, indicating the important role that

release processes have in the software development process. Whether a web ser-

vice, an open source project, a commercial system, or an internally-developed

application, to a user, unreleased software is practically nonexistent software.

Delayed or cancelled releases can have many negative consequences for a soft-

ware project. A high-quality release process forms an important part of a

software development strategy to create low-fault and high-frequency releases.

Almost all software organizations of non-trivial size establish formal

processes to create releases. These processes may differ significantly between

organizations, but they usually share common features. They may be codi-

fied, either through technical documentation, the actual tools used to create

the release, or, most dangerously, solely through organizational tradition. De-

veloping and maintaining release processes requires a level of effort that many

organizations are not willing to invest.

As with any part of the software development cycle, release processes

may not always be strictly followed. When deviations to these processes arise,

1

release engineers are often under high pressure to complete the release and

may be completing their tasks with improvised tools and recovery processes.

This work will also show, that an improperly devised release process can also

have software quality implications by allowing too little time or resources for

release artifact testing.

Because of the unique position of the release process in the overall

software development cycle, anomalies in the release process may have signif-

icant impact. These impacts may be quantifiable, such as lost revenue and

project delays or more subjective, such as a decrease in organization morale,

and project market share. Regardless of the type of impact, the results of this

work show that creating effective and timely release processes can improve the

overall quality of software an organization ships.

Unfortunately, the processes whereby organizations predict, encounter

and recover from release process anomalies are not well understood. Much lit-

erature is devoted to software engineering and development processes, but the

topic of release engineering is largely absent (see Chapter 2 for a discussion of

existing release engineering topics). We propose that by better understanding

release processes, release engineers can better predict when process failures

will occur, and be better positioned to recover from the eventual anomalies

they encounter.

To this end, we address the following three questions in this dissertation

and develop four theories in response to these questions. They are:

2

I What is the common form of release processes?

II What process faults and failures commonly occur?

III What strategies or techniques can help prevent these faults and failures

in the future?

Through the empirical case studies used to better understand release

processes, we develop theories in the following four areas:

I The structure of release engineering processes

II Common release engineering failure modes

III The relationships between software architecture and release processes

IV Release process improvement

By addressing these questions, future researchers and practitioners will

have a better understanding of the nature of release processes and how to

improve them.

1.1 Background

Broadly speaking, release engineering consists of the part of the soft-

ware engineering process during which the release artifact(s) are produced.

Many software organizations of sufficient size have release engineers or release

engineering teams. Although the nomenclature may be common, the roles

3

fulfilled by these groups, as well as the artifacts produced, are as varied as the

groups themselves.

1.1.1 Description

The artifacts created by release engineering may vary. Traditional ex-

amples include binary executables, installers, libraries, and source code pack-

ages. Newer service-oriented-software delivery paradigms provide an alterna-

tive to the traditional artifact distribution model. Instead of installing an

artifact for local use, users often interact remotely with the software running

in a hosted environment. This shift alters the method by which the software

is released. While these two paradigms are discrete, in practice, artifacts and

their corresponding release processes may exist anywhere along this contin-

uum [45].

Whatever the artifact, the software must eventually be released, and

this release process should be viewed as part of the software development

process. Traditional software development methodologies, such as the spiral or

waterfall models, usually considered release engineering part of the deployment

and maintenance phases [6, 41]. However, several of the subjects interviewed

in this research treated release engineering as a concern relevant to all stages

of software development.

To effect releases, many proprietary and open source software projects

employ dedicated release teams that are tasked with building the final ship-

ping product, very literally “engineering the release.” The hand off between

4

development and release teams may be a discrete step, or the separation be-

tween the two contexts may be more nebulous. As is the case with the types

of artifacts produced, team composition exists along a continuum, rather than

conveniently constructed taxonomic divisions.

1.1.2 Context

For many development teams, release engineering can usually be broken

into several phases: stabilization, validation, and publication (as shown in [16]

and [29]). During the entire process, the release is overseen by one or more

release engineers. This individual or team may coordinate release activities,

determine schedule, and make binding decisions regarding releases. Depending

on the size of the development team, release management may be a dedicated

assignment, or may rotate among team members.

Release processes evolve as organizations change. A small startup com-

pany with a single product will release software much differently than a multi-

national vendor supporting multiple product lines. While developers and ar-

chitects focus their energies on the design of the software itself, in many cases

the release process tends to gradually evolve, with very little comprehensive

design. Instead, companies and projects add release engineering techniques

as required, often with little forethought or structured design of the process.

As release faults can increase project delay (as shown in [50]), there is often

little time for process examination and improvement. The research presented

in this dissertation shows that organizations often attempt to improve their

5

release processes after such failures, but resource demands to do so are large.

1.1.3 Consumers

Release artifacts produced by the release process are targeted toward

consumers, or users of the software. These consumers may fall into two gen-

eral categories: internal and external [42]. The type of consumer a software

product is targeted toward often impacts the release process.

1.1.3.1 External Consumers

External consumers usually expect the software to function as is with

little interaction with the producer of the software. They may buy the software

in a box, or download it through the Internet, but the developer often has little

control over the environment the software will be deployed in and how it will

be used. Software of this type is often mass-produced with the intention of

being sold to a large number of individual users.

1.1.3.2 Internal Consumers

Internal consumers of a release are often entities within the software

producer’s own organization. A common scenario for this is a hosted software

service, where the company building the software and the company deploying

the software are the same. A development team may build a system and then

hand off deployment to an operations group, but the target environment is

generally much more constrained than in an external consumer scenario.

6

Developers of software intended for internal consumption often have

the luxury of knowing their intended deployment environments, workloads,

and datasets during the development process. They can also coordinate with

release engineers and developers during and after the release process.

In the realm of release engineering, communication is one of the distin-

guishing factors between internal and external consumer environments. When

providing software to external consumers, the feedback channel may be lim-

ited, usually to paid phone support, email or issue trackers. Internal consumers

often have direct access to developers and can provide rapid feedback or as-

sist with release-related issues. Interestingly, as the cost and customizability

of the software product grows, the distinction between internal and external

consumers is often blurred.

1.1.4 Release Timing Models

Release managers employ a number of strategies to time their future re-

lease plans, but two major models stand out: time-based and feature-based [28].

In addition, a hybrid between these two models often emerges as a compromise

option during the release process.

1.1.4.1 Time-based Releases

The commonly accepted definition for a time-based release process is

one that follows a strict calendar-based schedule, aiming to release major ver-

sions of the software at regular intervals. While some projects allow for sched-

7

ule slippage, releases usually aim to ship as close to the target date as possible.

Time-based releases can often be a successful strategy, particularly for a highly

modular project.

1.1.4.2 Feature-based Releases

Alternatively, feature-based releases focus on completing a set of fea-

tures prior to release. While this feature set may change as the release process

progresses, feature-based release processes usually include feature collections

that are difficult to separate due to their interdependencies. Feature-based

releases require release manager and developer discipline to coordinate and

plan proposed features, as well as ensure the plans are properly executed [10].

1.1.4.3 Hybrid Model

Some organizations employ a combination of feature- and time-based

release models. This hybrid model recommends releasing at regular intervals,

but also attempts to have a firm collection of features in the release. Alter-

natively, release managers may choose a set of features for the release and

then set a time-line for the implementation and release of those features. As

with many other aspects of release engineering, release models exist along a

spectrum.

8

1.2 Definitions

In addition to the above descriptions of release consumers and timing

models, throughout this dissertation we use a variety of terms, which are

defined below.

Monolithic Architecture A software project comprising a number of highly-

coupled components or modules. While they may be packaged sepa-

rately, there is still a high level of interdependence between them. The

Linux kernel described in [7] is an example of a monolithic system.

Modular Architecture A software project comprising loosely-coupled com-

ponents, whether packaged together or independently. An example of a

modular software system is described in [19].

Release Artifact The software bundle created or deployed for the release;

the product of the release. It is usually a binary package created by a

build system but may be a script or other object provided to consumers.

Release Failure A release event which does not meet organizational stan-

dards. Examples include a release artifact with a high level of faults,

releases that require extra time to produce, and releases that require

extra personnel to create.

9

1.3 Personal Experience

In late 2006, the author became involved in the development of the

Subversion open source project [1]. During the course of participating in the

Subversion development community, he volunteered to coordinate the project’s

release under the title of Release Manager. The project had an extensive

release process in place, yet the creation of the Subversion 1.5 release resulted

in number of process and product anomalies1. Thus, finding the causes of these

deviations from process, and the accompanying methods to prevent them, is

not only a topic of general interest, but one of personal interest for the author.

1.4 Motivation

In searching the literature to better understand the causes of the process

failures the Subversion team experienced, I was struck by the lack of concrete

research about release processes in the software engineering community. Com-

bined with a large number of anecdotal conversations with industrial release

managers, this inspired me to apply the degree of academic rigor to release

engineering to which other subjects are treated by the software engineering

research community.

Thus far, release engineering has been area of scattered research. The

research outlined in this dissertation does not purport to fully address the

general topic of release engineering or circumscribe the field as a whole. In-

1A discussion of these anomalies was published as [50], and is included herein as Chapter
3.

10

stead, the author address an issue of practical importance to practicing re-

lease engineers, namely, how release processes fail and how those failures can

be predicted and recovered from. The final result of this research is an im-

proved understanding of release processes, their faults and failures, and ways

to improve the state of the practice.

1.5 Summary of Contributions

In summary, this dissertation presents:

• A personal case study experience with a difficult release

• Several case studies of release processes from various proprietary devel-

opment organizations

• Theories derived from these case studies in the areas of:

– the structure of release engineering

– causes of release engineering failures

– relationships between software architecture and release process com-

plexity

– release process improvement

11

Chapter 2

Related Work

This chapter examines the related work in the field of release engineer-

ing. Even with the relevance of the topic, very little research has been done

into the release process itself. This chapter will outline the existing research

in the field of release engineering, and how this dissertation complements the

existing research.

As Michlmayr outlined [29], development and maintenance of software

projects have historically been considered discrete steps in the development

processes. Existing research in the area of release engineering and manage-

ment can likewise be broken down into the multiple phases of deployment and

maintenance. With the advent of the Internet, however, these distinctions are

beginning to blur [45] as it enables more efficient distribution models.

2.1 Release Engineering

The open source world has provided a particularly fertile—if biased—

source of data for examining release processes. Erenkrantz outlined release

processes in several open source projects [16], but the work is quite dated

and each of the projects surveyed has changed their process in the interim.

12

Michlmayr examined release engineering processes in open source projects, and

problems that the open environment presents to the process [28, 30], such as

the difficulties in coordinating release tasks across geographically distributed

volunteers. Additional researchers have also examined how release managers

fit into the onion model of open source projects [13].

Release engineering is also an integral part of the larger software engi-

neering processes. Software processes have been modeled and analyzed [48],

but the analysis has not yet been applied to the entire release process itself.

Nor have specific release process models been generalized to include the en-

tire process, preferring instead to investigate release engineering on a micro

level. Generalized release process models would give researchers and practi-

tioners a common framework in which to address process concerns and suggest

improvement.

Improved software development processes have been shown to decrease

the development time and effort between releases [21], suggesting that study of

release processes themselves would be candidates for study and improvement.

This result both validates and motivates our contribution because it does not

specifically address how release processes can be improved, only that by so

doing, development time will decrease.

Process improvement has also been shown to decrease the amount of

faults in software projects [14], although most literature in this area focus on

the development process and not the release process. Through our interviews

with release engineers, we explore how improvements to the release engineering

13

process can also improve the quality of the released software.

2.1.1 Release Timing

As part of this micro-level investigation, several researchers have tried

to establish models defining the proper software fault/feature ratio at which

to publish a software release [31]. Levin and Yadid extended this work to look

at incremental update or “bug-fix” releases [26].

Releasing software with known issues is never comfortable for develop-

ers, but eventually the marginal cost for finding the next bug outweighs the

marginal benefit obtained by its elimination. Several researchers have intro-

duced various models to help determine the minimal cost of a project given

the probability of faults and the cost of finding them [23, 25, 24, 51]. In many

cases, these models rely upon parameters that are not well-defined in real sys-

tems and are thus overly simplistic. Some papers attempt to counter this issue

by using artificial intelligence to improve release timing [15].

These studies primarily come from the software reliability literature

and are focused on creating low-fault, yet cost-effective software. Unlike the

contributions in this dissertation, they focus on artificially-constrained models,

instead of the process used to create the software artifacts.

As mentioned above, additional work looks at how release cycles can

be shortened by improving development processes [21]. Some researchers have

also developed prototype tools to assist with the release planning process [9],

but neither of these efforts look at how the process can be improved and what

14

particular failures cause timing delays.

While this work involving release timing is useful, it does not address

the fundamental question of the release process itself, nor do these studies

address the highly variable nature of the release process. It may be possible

that the variance introduced into the release timing by process-related concerns

outweighs the marginal time required to find the next bug, but this is yet

unfounded.

2.1.2 Deployment

Some authors have looked at where the release process fits in the soft-

ware development cycle. The problem of distributing the release artifact is

and managing dependencies addressed by van der Hoek, et al. [45]. While

useful, this neglects the issue of the process used to create the release artifact,

which this dissertation addresses. Other related work describes the Software

Dock [20], a system for configuration, deployment, and maintenance of soft-

ware installations.

These systems describe how to deploy software, but do not address

the key problem of creating the actual deployment artifact, nor the faults

encountered in doing so. While deployment could be considered an important

part of the general release process, release engineering encompasses much more,

such as artifact generation and testing.

15

2.1.3 Maintenance

Once software has been initially released, it typically undergoes a period

of maintenance, which may last the entire operational lifetime of the software

system. This maintenance phase has itself been the subject of much research,

including that of Perry, et al. [37]

2.2 Relationship to Other Disciplines

Software development is often compared with other product develop-

ment disciplines, from building bridges to making automobiles [39]. While

many parallels with other engineering disciplines do exist, at some point the

analogies break down, and software engineering must be approached as a prob-

lem unique unto itself. This research addresses software release engineering on

its own right.

In the generic engineering space, the term Product Lifecycle Manage-

ment (PLM) refers to the organization of a product throughout its entire life,

from conception to destruction [43]. Most frequently, this is applied to phys-

ical products, which have production and distribution costs, and may even

have defined decommissioning and destruction costs. While the amount may

vary, physical products always have some form of marginal (per-unit) cost

associated with their use, which PLM seeks to help track and manage.

While many of the lessons of PLM can be applied to software prod-

ucts, software engineering is unique enough to warrant specific study [5]. The

16

marginal costs of a software product are often near-zero, given the fact that

duplicating and distributing software via the Internet is now commonplace.

Thus, the majority of software product costs are fixed in the development

stage, where process improvements can have a dramatic impact.

In short, while existing research in engineering Product Lifecycle Man-

agement may appear useful at first blush to apply directly to software engi-

neering, the difference between disciplines warrant research directly on and

applicable to software release engineering and management.

2.3 Limitations of Existing Research

In summary, the existing research consists of surveys of existing prac-

tices, analyses of how these practices influenced overall project productivity,

or tools and models to attempt to find optimal release timing. The research

does not look at the overall process, process failures, or develop general areas

of theory surround release engineering. This work overcomes these limitations

by taking a holistic view of the release process, and developing theories from

observations of real release engineering processes.

17

Chapter 3

Initial Study

This chapter describes an initial analysis of release anomalies encoun-

tered during the release cycle of a prominent open source project. Much of

this information was collected via first-hand experience with the project in

question. This study led to the questions raised in Section 3.4, and ultimately

to the studies described in Chapter 5.

Apache Subversion [1] is a popular version control system whose ini-

tial goal was to replace the aging Concurrent Versions System (CVS) with

a more modern design and feature set. With the release of Subversion 1.4.0

in September 2006, these goals were largely accomplished, and the develop-

ment community focused on making additional improvements to Subversion.

These included features requested by both open source users and corporate

deployments, with the primary one being merge tracking.

Although Subversion had a well-established process for crafting re-

leases, the process broke down during the subsequent feature release, Sub-

version 1.5.0. This process failure led to frustration in both the developer and

user communities, and this initial study focused on how these problems could

be prevented in the future.

18

3.1 Subversion Release Process

In the early days of the project, Subversion developers established a

guiding document known as the “Hacker’s Guide to Subversion” [3]. Colloqui-

ally referred to as HACKING, this document outlines many aspects of com-

munity processes and procedures, including release processes. Although the

community allows for circumstantial variation in these processes, HACKING

is fairly specific as to how the release process should proceed.

Crafting a release of Subversion involves many individuals in a coor-

dinated effort following established procedures. In the following sections, we

describe the roles these individuals fill, the different types of releases, and the

version numbering scheme for Subversion releases. We also describe the pro-

cess used to create a new feature release of Subversion. In Section 3.2, we

compare the ideal described here with what actually happened when releasing

Subversion 1.5.0.

3.1.1 Community Roles

In a large and complex open source community, such as Subversion,

different members take on different roles within the project. Individuals may

fill more than one role, (i.e., a person may be both the release manager and a

committer), but the roles themselves are distinct [13]. Below we describe the

pertinent roles in creating a release of Subversion.

19

3.1.1.1 Release manager

The release manager for the Subversion project is a volunteer individual

who oversees the entire release process. Typically one of the developers, the

release manager coordinates branching dates, signature collection, tarball dis-

tribution, and release publication and announcement. Rarely does the release

manager make unilateral decisions, but his voice is influential in directing the

release process and coordinating discussion within the community.

3.1.1.2 Committers

Committers are individuals with full commit rights to all locations in

the Subversion source code repository. How an individual becomes a commit-

ter is beyond the scope of this paper, but the primary qualifications for this

designation are good judgment and trust within the community. As part of

the release process, committers run independent tests of the candidate tarball1

on a platform of their choosing. Upon successful completion of the tests, they

provide cryptographic signatures verifying the integrity of the release.

3.1.1.3 Third-party distributors

Rarely do users make direct use of Subversion source code as provided,

and the project itself does not provide binary packages. Instead, a vibrant

community of third-party distributors provides binary packages of Subversion

1Tarballs are a standard source code release artifact on many POSIX platforms.

20

for various platforms.2 Because of Subversion’s well-documented APIs, many

third parties build tools on top of the Subversion libraries that integrate with

other platforms and environments. While not directly involved in the release

process, the feedback from these consumers helps validate API consistency

between releases and provides important testing during the validation of a

potential release.

3.1.2 Versioning Guidelines

Subversion has adopted the “MAJOR.MINOR.PATCH” release num-

bering strategy, similar to that used for the Apache webserver [16]. The version

numbers allow users to know what compatibility guarantees they can expect

between different releases.

All releases with the same MAJOR.MINOR numbers are considered

part of the same release series, with MAJOR.MINOR.0 being the first release

in the series. Subsequent releases within the series are considered patch or bug

fix releases, and the project guarantees that several important parameters,

such as APIs and on-disk working copy database formats will not change.

Thus, users and API consumers can know that interfaces will stay consistent

between patch releases. New features are never delivered as part of a patch

release.

2One informal poll at a meeting of Subversion users indicated that not one in a group of
over sixty professionals used the source packages as provided by the project. When deploying
Subversion, these users all relied on third-party packages.

21

Changes to the MINOR number result in a new feature release. These

releases contain new features and may change database formats on both the

client and server. Features releases are promised to be backwards compatible,

both in features and APIs, and work with old database formats. Newer releases

can read and write older formats, but old releases are not guaranteed to be

able to read newer formats—though they often are able to.

In addition to code and database compatibility, all releases with the

same MAJOR version number are compatible client-to-server. Older clients

may not be able to take advantage of more advanced features in newer servers,

but they will still be able to communicate. This compatibility is both forward

and backward.

3.1.3 Release Procedure

For several years, Subversion has used a hybrid between feature- and

time-based release strategies. Feature-based releases define particular releases

by specific features, while time-based releases use strict timetables to deter-

mine release dates [30]. In Subversion’s hybrid model, the developers would

wait some amount of time, usually around six months, determine which fea-

tures were completed or nearing completion, and use those to define the next

release.

Several weeks prior to a new feature release, a release branch is created

for that release. This branch is a snapshot of the main development branch,

trunk, and is used for bug fixing and stabilization prior to release. This branch

22

is ideally created at a time when trunk is considered stable enough for release,

but frequently the need arises to perform additional stabilization on the branch

prior to releasing.

To port fixes from trunk to the release branch during stabilization, com-

mitters nominate and vote on specific changes or groups of changes. A change

must receive three positive votes from different committers to be approved

for inclusion in the release. Any change may be nominated, but successful

nominations are for changes which fix a known bug, increase performance in

a non-invasive manner, or fix known API problems. Any committer may veto

any change.

When the release branch is considered sufficiently stable, a release can-

didate (RC) is created from the branch. This release candidate is just that: a

candidate for what will eventually become the official release. The RC enters

a period known as the soak, a four-week waiting period during which early

adopters are encouraged to test the potential release. If no critical errors are

found during the soak, a final RC is created, which eventually becomes the

new feature release. If a critical error is found, the release manager publishes

a new RC with the problems fixed and restarts the soak period. Table 3.1

shows the historic times for creating Subversion feature releases.

Each RC, feature release, and patch release goes through a validation

process before being published. As mentioned before, committers thoroughly

test the candidate using the included unit and regression test suites and, upon

successful completion, cryptographically sign the release artifacts. In addi-

23

Release Branch date Release date Days
to first
RC

Number
of RCs

Days
to
release

Days
from
previous
release

1.0 19 Dec 2003 23 Feb 2004 63 1 66 N/A
1.1 10 Jul 2004 29 Sep 2004 4 4 81 219
1.2 04 Apr 2005 21 May 2005 1 4 47 234
1.3 28 Sep 2005 30 Dec 2005 7 7 93 223
1.4 05 May 2006 10 Sep 2006 27 5 128 254
1.5 30 Jan 2008 19 Jun 2008 69 11 141 648
1.6 16 Feb 2009 20 Mar 2009 0 4 32 274
1.7 11 Oct 2011 13 Jul 2011 37 4 90 935

Table 3.1: Dates between Subversion releases

tion, enthusiastic users are invited to test the candidate tarballs and provide

feedback, but their testing is not counted toward the required number of sig-

natures.

Committers test on the platform of their choice, but the project re-

quires three signatures from testers on both POSIX and Windows platforms,

in addition to that of the release manager, for a total of seven independent

signatures. When these signatures have been collected, the release manager

uploads the release tarballs to the distribution server and publicly announces

the release. For each release, the project distributes source code in .tar.gz,

.tar.bz2, and .zip formats, a set of dependencies in the same formats, and

the signatures generated as part of the validation process.

After the feature release is published, development on the next feature

release continues on the main trunk. As developers find and fix bugs, they

continue to nominate and port candidate changes to the release branch. When

24

1.4.xbranched

1.4.0

1.4.1

...

1.4.2

1.4.4

1.4.3

...

...
1.5.0

1.5.xbranched

1.4.5

1.5.1

Figure 3.1: Subversion Release Process

a sufficient group of such fixes accrues, a new patch release is issued from this

branch, following the same pattern as creating a RC, including committer

testing and signature collection. This process may be expedited for serious

bugs or regressions. Figure 3.1 illustrates the branch-and-release structure of

the Subversion release process.

3.2 Releasing Subversion 1.5.0

Following the Subversion 1.4.0 release in September 2006, the develop-

ers turned their attention to Subversion 1.5.0, the next major feature release.

Subversion had largely fulfilled its goal as a replacement for CVS, and the

developers started looking for ways to further enhance the feature set. The

project needed direction and found it in merge tracking.

3.2.1 Merge tracking

Merge tracking was defined within the project as keeping track of which

changes occurred on which branches and how these changes have been applied,

or merged, to additional branches. In Subversion 1.4 and earlier, Subversion

25

required users to manually track this information, which proved tedious and

error-prone. Individual users, as well as corporate customers, wanted Sub-

version to track this information and automatically use it when performing

merges between branches. The developers decided that merge tracking would

be the defining feature for Subversion 1.5.0 [4].

Work on the merge tracking feature began on a feature branch, a copy of

trunk used to implement potentially destabilizing features. Feature branches

are useful in isolating incomplete or broken code from unwitting developers

but have the drawback that code on the branch is not as well reviewed or

tested. Six months after creation, the merge tracking branch had grown quite

complex but had not yet been merged back to trunk.

Several months after merge tracking was started, in March 2007, several

developers proposed releasing currently available features in an intermediate

feature release, prior to releasing merge tracking. However, the community

felt that merge tracking was close to completion, and that any effort spent

creating and stabilizing an interim feature release would further delay this

feature. Shortly after this decision, the merge tracking branch was merged

to trunk, and the developers felt that Subversion 1.5.0 would be released by

September 2007.

The complexity of merge tracking also hindered development efforts.

Only a small percentage of the development community was actively working

on the merge tracking feature, and it had grown so complex that additional

developers were hesitant to invest the time required to make meaningful con-

26

tributions. As the release cycle progressed, many individuals knew enough

about merge tracking to raise important concerns but lacked the knowledge to

solve them.

As the testing of merge tracking progressed, defect rates failed to sta-

bilize, and the developers continued to work to increase performance. Addi-

tionally, the initial design was flawed, which required additional workarounds.

Internal and external pressure mounted to create a release, in spite of the

chaotic state of the code base.

3.2.2 From branch to release

Finally, after a couple of abortive attempts, the 1.5 series release branch

was created at the end of January 2008. Fixes began to flow into the branch,

leading to an initial alpha release on 22 Feb 2008. This release did not pass

committer verification and was quickly followed by a second alpha release on

29 Feb 2008. This was the first time the Subversion project had used the term

“alpha” on a release, and both alpha releases contained a number of known

issues.

While stability continued to increase, a discussion opened within the

project about what to call the next pre-release. One faction wanted to proceed

with an RC so the four-week soak period could start, while others, recognizing

the bugs that existed were severe enough to prevent an actual feature release,

wanted to be more conservative when naming pre-releases. Eventually, the

groups reached a compromise, and a beta release was followed by the first true

27

RC on 7 Apr 2008. This was more than two months after the branch was

created (see Table 3.1), an abnormally long time for branch stabilization for a

feature release.

Unfortunately, the first RC had critical bugs, and it was not officially

published, nor were the second or third RCs. It was not until RC-4 was

announced on 24 Apr 2008, nearly three months after the feature branch was

created, that the official soak period began. Additional minor bugs were found

and more RCs created, some of which were never published due to the near-

immediate discovery of still more problems. As the soak period ended, third-

party consumers found additional API bugs that required yet more RCs, often

with less than a week of separation between them. Over the course of the

process, the release manager created eleven separate RCs, five of which would

never be released because they did not pass internal validation.

Subversion 1.5.0 was finally released on 19 Jun 2008. This release came

after much debate and struggle within the community, but the developers

decided to release even with known issues. The prevailing rationale was that

postponing the release would do more harm than good, and existing bugs

could be fixed in subsequent patch releases. After experiencing the marathon

1.5.0 release process, developers also felt it was time for a change in release

processes.

28

3.3 Discussion

In the several months following the release of Subversion 1.5.0, and as

the developers worked toward the next feature release, they identified several

places where the 1.5.0 release process failed. The developers planned on us-

ing these observations to implement improvements when releasing additional

feature releases.

3.3.1 Learn from the past

Despite the transparency of process and free exchange of ideas, open

source projects can sometimes be slow to learn from the experiences of others.

Sometimes this happens intentionally, but most of the time community mem-

bers are either unaware of the problems other projects face, being too focused

on their own work to notice, or convinced that the same problems are not at

play in their own project. A combination of these factors played into the delay

in releasing Subversion 1.5.0.

Software projects are notorious for being delivered late [46]. For exam-

ple, the Emacs text editor released version 22.1 in June 2007, nearly 6 years

after the previous feature release. The long development cycle and time be-

tween releases frustrated users, who were forced to download and build their

own copy of the latest development sources just to have access to features

that had already been included in the development branch for years, but were

unavailable in the last official release. Developers also felt alienated by the

unresponsiveness of the community leadership and frustrated by the long time

29

between when code was written and when it actually shipped [12]. The Subver-

sion community could have seen and worked to avoid frustration by releasing

sooner but did not.

Another project that faced problems similar to Subversion 1.5.0 was

the FreeBSD operating system [2]. FreeBSD 5.0 languished in stabilization

for several years as new features were added and stabilized in an ambitious

development effort. As with Emacs, some of the Subversion developers were

aware of the experiences of FreeBSD, but no one thought these same problems

could apply to Subversion. Näıveté, ego, or both prevented developers from

learning from these mistakes in preparing Subversion 1.5.0.

3.3.2 Follow the process

Projects typically create guidelines to assist with the release process,

and Subversion is no different. HACKING exists to bring order to the oc-

casionally chaotic nature of open source development and to help newcomers

become involved in the project. Consistently following established guidelines

can help a project create releases that are both timely and of acceptable qual-

ity.

In an effort to publish a release, any release, the release manager began

putting out alpha and beta releases, without any formal definition of what they

meant and how those releases differed from typical RCs. When true RCs did

start appearing, there was some question as to their quality; over the course of

the release cycle, five of the eleven RCs were never published. The Subversion

30

community did have a process and attempted to follow it, but the process was

not designed for such large features as merge tracking.

It was not until the developers neared the end of the soak period and

actually started threatening to create the final release that API consumers

and third-party distributors started seriously testing the RCs. This led to the

discovery of another set of bugs, more RCs, and more schedule slippage in

attempting to deliver Subversion 1.5.0.

The community was also unwilling to release code with known issues.

No developer wants to release buggy code, but for most users, perfect code—

even if achievable—is nonexistent code if it has not yet been released. As the

number of changes in subsequent patch releases attests, Subversion 1.5.0 did

have many bugs, but none were showstoppers for the release, and most have

been addressed in subsequent patch releases.

3.3.3 Time-based releases

Many projects, from complete GNU/Linux distributions to individual

software packages, have adopted a time-based release strategy. The theory be-

hind such a strategy is to keep the time between when a feature is implemented

and when it is released beneath some known upper bound. We call this the

“bus station philosophy”: if a feature misses a release, the next will be along

shortly, so the release should not be held up for any one feature. This type

of process helps keep developers engaged in the project and gives users the

ability to plan upgrade cycles around known dates. It also helps developers

31

plan their efforts to allow trunk to be in a branchable state when release dates

approach.

This type of strategy should work well for Subversion in particular

because of the large number of third-party distributors who rely on releases

created by the project. These consumers’ products often require extensive

development and testing to incorporate features new in a Subversion release.

During the Subversion 1.5.0 release process, it was not until the developers

threatened imminent release that some third-party users started testing thor-

oughly. Having a well-publicized schedule helps these communities as they

build their own products.

Creating “time-based” releases is not a panacea for ensuring a con-

sistent release process. Planning releases becomes difficult in open source

projects where resource levels are unknown and constantly shifting. When

release deadlines approach and features are not complete, the community has

to make difficult decisions about removing features, letting release dates slip,

or shipping partial features. In a consensus-based community, such as Subver-

sion, making these decisions can be difficult and require resources that detract

from further development.

3.3.4 Defining releases independent of features

Early in the 1.5 release process, developers and other interested parties

came to expect that Subversion 1.5.0 would include the much-hyped merge

tracking feature. This feature was crucial for a number of potential adopters

32

and heavily desired by one of Subversion’s corporate sponsors, CollabNet.

As the development cycle continued, it became evident that merge tracking

was a complex problem and would take much longer than anticipated, but it

continued to define the 1.5.0 release.

Since most of the merge tracking development was happening on a

branch, trunk was still in a releasable state, and an intermediate feature release

could have been created in early 2007. A number of developers floated this

idea, but the community ultimately rejected it in favor of focusing on delivering

a 1.5.0 release that contained merge tracking, estimated to be delivered by

September 2007.

Instead of defining Subversion 1.5.0 as the release that would add merge

tracking, the community should have examined which features already existed

and been satisfied with creating a release with those features. As a result of

a delay in merge tracking, many other desirable features were also delayed,

forcing users to run potentially unstable development sources to obtain those

new features, much like Emacs users did during the period described in Section

3.3.1.

By defining features independent of releases, developers not only create

the opportunity to release more frequently, they also constrain themselves

to more modularly designed software. In the case of Subversion 1.5.0, the

merge tracking feature ended up being much larger than anticipated and the

community ill-equipped to handle it. As a result, instead of dividing and

parallelizing the development effort on merge tracking, the developers forced

33

themselves to deliver it as an atomic feature. This also increased testing

complexity, further prolonging the release cycle.

3.4 Questions Raised

This look at the release processes of the Apache Subversion project,

and the process failures accompanying one of its releases motivated several

questions about release processes generally. The include:

• Were these types of failures specific to Subversion, or were they mani-

festations of general problems other projects also faced?

• If other projects and organizations faced these problems, how did they

detect and attempt to recover from these process failures?

• Would these results be specific to the organizations which encountered

them or shared across many software development groups?

The desire to answer these questions led to the case studies described in Chap-

ter 5.

34

Chapter 4

Study Design and Methodology

After conducting the initial study described in Chapter 3, we wondered

if the problems encountered by the Apache Subversion 1.5.0 release were spe-

cific to it, or if such problems and their solutions were more common. To

answer the question described in Section 3.4, we decided to perform a set of

multiple case studies with practicing release engineers to gather more informa-

tion about release process design and common failures in release engineering.

In this chapter, we describe our study design, including interview for-

mat and data source selection. Of particular importance are how we chose

interview subjects and what effect this has on the results of our study. We

also discuss the threats to validity in Section 6.

4.1 Data Source Selection

In selecting the subjects for our set of case studies, we decided to fo-

cus primarily on proprietary organizations and their processes. Part of this

decision was due to the fact that open source release processes have already

received some coverage (see [29]), but more importantly, there are validity con-

cerns with using open source data as the primary and only data source [49],

35

as addressed below.

In addition, proprietary software systems often include additional ex-

ternal impacts which are not always present in open source systems. Business

goals, marketing departments, and the presence of paying customers impact

proprietary release processes in ways that are not always present in open source

systems. For example, business concerns affected the timing goals of releases

in Case H, an effect which would not be as marked in an open source envi-

ronment. These types of issues have a definite impact in release failures, and

want to ensure we capture them adequately in our case studies.

4.1.1 Open Source vs. Proprietary Data

Table 4.1 demonstrates how open source data can potentially domi-

nate (and ultimately influence) the results of software engineering research. It

shows the results of a brief survey of data sources used in software engineering

research papers presented at several ICSE and FSE conferences. This survey,

while not completely representative of all software engineering research, does

show what the prevailing trends are at the major software engineering confer-

ences. In this survey, we have investigated the extent of empirical studies that

use only open source software artifacts (OSS) vs. proprietary source software

artifacts (PSS).

It should be noted that open source projects exist along a continuum of

open development practices and licenses, so this classification is, of necessity,

subjective. In classifying the papers, we looked for papers which used open

36

Conference
Total Papers Data source
papers using data open closed custom combination

ICSE ’07 49 39 18 9 10 2
ESEC/FSE ’07 42 23 12 5 2 4
ICSE ’08 56 36 17 9 5 7
FSE ’08 31 19 7 5 2 5
ICSE ’09 50 38 22 7 3 6
ESEC/FSE ’09 38 20 10 5 2 3
Total 266 175 86 40 24 27
As percent of
total with data

— 100% 49% 23% 14% 15%

Table 4.1: Use of open source as data sources in research papers

source data, not just those that built an open source tool or provided their

tool under an open source license. Neither did we classify such papers as

open when their authors implemented their tool as a part of an open source

framework. Table 4.1 illustrates the results of our survey regarding the use of

OSS vs. PSS.

Of the recent papers at ICSE or FSE that use software projects as study

subjects, nearly half use OSS data exclusively, while another quarter use just

PSS data. Only 15% of the papers used any combination of OSS, PSS, or

custom data (which includes manufactured examples and benchmarks). We

hope that the difference between OSS and PSS is not as drastic as believed,

lest the validity of a large amount of software engineering research comes into

question.

Even though the release processes studied in this dissertation do not

concern themselves directly with source code, focusing on proprietary de-

37

velopment organizations, rather than open source communities, will better

contribute to the body of knowledge in software engineering. Although this

technique poses logistical challenges (described below), it will produce more

complete results, because it captures aspects of release engineering not exis-

tent in pure open source communities, such as those related to marketing and

business concerns. This technique better complements the existing body of

research.

4.1.2 Subject Selection

Finding release engineers embedded deep within proprietary software

development organizations is not a trivial task. We could not simply contact

a trade group or visit a convention and solicit opinions. Rather, to reach

as many potential release engineers as possible, we sent requests to various

software development mailing lists asking for references to practicing release

engineers. An example of such a request is included in Appendix B. We

also made inquiries among professional networks, and asked interviewees for

references to other potential subjects. These methods obviously suffer from

various kinds of biases, such as self-selection, but it gives sufficient variety to

lend validity to the results.

Our group of interview subjects spans a range of software domains

and development methods, from small “agile” teams that release frequently to

large organizations that only occasionally create release artifacts. Similarly,

the artifact distribution models ranged from deploying to internal corporate

38

customers in a controlled hosted environment, to sending a hard disk with

80GB of software updates with a technician to a customer site, to sending an

image to a manufacturing plant for use on new hardware.

Where possible, we tried to interview multiple individuals from a single

organization to get a more rounded view of the release process under study.

However, such a constraint was often difficult to fulfill, due a number of rea-

sons. First, scheduling conflicts often dictated that only one member of an

organization was able to participate in our interviews. Second, even though

we granted participating organizations anonymity in publication, many groups

wanted to limit the number of interviewees for legal purposes, since our request

to interview people often required legal review. Lastly, and perhaps most sig-

nificantly, many organizations only had one individual responsible for releases,

a point further discussed in Section 7.1.1.1.

Each of the interview subjects fell into one of two self-identifying cat-

egories: a dedicated release engineer whose primary responsibilities were on

release and deployment; or a member of a development team who was also

responsible for that team’s release activities. Insights from both groups were

useful, with many common themes present. Table 5.1 summarizes the orga-

nizations in our studies, and they are discussed more thoroughly in Chapter

5.

Many of the subjects had been in release engineering roles prior to their

current projects and offered to share insights based on those experiences as

well. Where possible, we incorporate that feedback into our analysis, even

39

when it was not directly related to the case at hand.

Prior to our interviews, this study was reviewed and approved by the

local Institutional Review Board, with IRB Approval number 2011-01-0041.

4.2 Interview Format

The interviews used as the basis for these studies were conducted over

the phone or in person and recorded for future review. The subjects were

sent an initial questionnaire explaining the study purpose and their role in it.

Appendix A contains a copy of the questionnaire we distributed.

Interviews typically began with a description of the proposed research

and an opportunity for the subject to share his or her role within the organi-

zation. In later interviews, common themes from earlier interviews were also

presented by the interviewer as topics for discussion in an effort to get more

thorough coverage of these areas.

After the initial discussion surrounding questions from the question-

naire, the interview subject was invited to discuss topics of interest to his or

her organization in the area of release engineering. Sometimes these included

in-depth discussion of tools to create a release, or the social problems accom-

panying the efforts to improve the release process. While not all topics were

covered equally by all subjects, the unique collection of comments from each

subject provided interesting insights into their release processes. Some of these

topics included:

40

• A description of the software product produced

• The composition of the release team

• How a release is timed

• Description of the product release cycle

• How release artifacts are tested

• How release artifacts are distributed

• Experiences when the release processes failed

• Observations by the interviewee on release engineering generally

This range of topics helped establish a more complete picture of release

processes from the people directly involved with them.

4.3 Analysis

After the interviews were collected and recorded, we listened to the

recordings, noting common themes throughout the collection of interviews.

We also looked for comments by interview subjects about the release pro-

cess failures and how their organization recovers from them as well as overall

challenges to creating a workable release process. We did not perform full

transcription or coding but did generate detailed notes about each interview

over the course of repeated reviews of the audio recordings. The descriptions

41

of the individual interviews are found in Chapter 5, and the analysis is found

in Chapter 7.

42

Chapter 5

Case Descriptions

In this chapter, we detail each of the case studies used in this research,

the interview subjects, the organization release processes, and failure episodes

from those releases. Chapter 7 describes the commonalities and differences

between these processes and general observations on the release processes and

failures based upon these cases. Table 5.1 summarizes the cases described in

this chapter along with some of the their defining characteristics.

Each case is unique. Some interviews go deeply into what steps are

required to create release artifacts, while others focus on team structure and

the social efforts needed to create releases of complex software systems. While

each interview is different, they complement each other to create a view of

dynamic release processes.

Likewise, the role of the interview subject for each of these cases is

also unique, which reflects on the differences among release techniques. Some

interview subjects are full-time developers who only do release engineering

responsibilities when called upon, while others spend all their time focused

on release and manage entire teams in doing so. These varied roles help add

additional perspective to our review of release processes.

43

Case Software Type Consumer Release
Type

Software
Architec-
ture

A Python-based application
environment

Internal /
External

Hybrid Modular

B Social-networking platform Internal Time-
based

Monolithic

C Online property-rental
provider

Internal Time-
based

Monolithic

D Network router control soft-
ware

Internal /
External

Varies Monolithic

E Online publishing software Internal Continuous Modular
F Payment system for online

rental-property provider
Internal Time-

based
Modular

G Network appliance manu-
facturer

External Unknown Unknown

H Binary packages of open
source system

External Time-
based

Monolithic

I Software-as-a-service
provider

Internal Time-
based

Monolithic

Table 5.1: Case Descriptions

Also, it should be noted that while release processes and failure de-

scriptions are accurate, product and company names have been changed in

the interests of preserving anonymity among with interview subjects.

5.A RJD

The company studied in Case A is primarily a consultancy, which builds

custom software tools for their clients, often in the industries of finance or sci-

entific applications. Many of their tools are based upon the open source lan-

guage Python. Company A produces and maintains a number of packages to

44

enable them to meet the needs of their clients. These packages are themselves

released as open source software as part of a larger software distribution, while

the domain-specific software required by clients is kept proprietary.

The interview subject in this case was a developer who also acted as

the product manager and release engineer for RJD.

5.A.1 Product Description

In order to facilitate the easy use of the Python-based system and the

additional packages produced by Company A, the company also creates their

own distribution of Python, known as RJD. This distribution includes their

own open source packages, other third-party packages, and some proprietary

components. In total, RJD includes almost one hundred separate components

integrated into a single released product.

Unlike the packages themselves, this distribution is not open source.

RJD itself ships as a standalone distribution, but is also used as the platform

for the software Company A provides to customers. Two different versions

of the product are produced: RJD and RJD-Free. The former requires a

paid license, whereas the latter is distributed for free, although it is not open

source. RJD-Free provides a reduced set of functionality from the full version

but also includes an upgrade path to users who want to upgrade to the full-

featured RJD in the future. An RJD distribution must also support a number

of different platforms, resulting in a number of distribution artifacts for a single

release.

45

RJD Users

Customer
Applications

Proprietary
Components

Open
Source

Packages

Figure 5.1: Upstream packages and downstream consumers of RJD

Thus, RJD has both internal and external consumers, though ulti-

mately the software is destined for users outside of Company A. Figure 5.1

illustrates this relationship.

5.A.2 Release Timing

Company A tries to release RJD every three to five months, but this

schedule varies. The needs of both upstream packages and downstream users

can influence the timing of a release with their own release schedules. As a

collection of packages, RJD is very modular, and the release manager can use

this modularity to choose to update or hold back certain components from a

particular release.

As proprietary customer applications are built upon the RJD platform,

the timely release of RJD impacts not only consumers of the stand-alone dis-

tribution, but also applications Company A writes for their clients. Sometimes

46

business reasons dictate that a release of RJD is brought forward to enable

the in-house applications to take advantage of new functionality.

Similarly, when upstream packages are on the verge of releasing updated

versions of their own projects, Company A may delay the release of RJD in

order to incorporate these updated packages, both for their own benefit, as

well as that of external users. Occasionally, the release manager for RJD will

contact upstream packagers to help coordinate release schedules, so that RJD

releases are both timely and fresh.

5.A.3 Release Team

The release team for RJD consists of a single individual whose role is to

coordinate and manage releases. The release manager’s role includes monitor-

ing upstream packages as well as the needs of downstream consumers. He fills

this role in addition to development and product management responsibilities.

5.A.4 Release Cycle

Similar to Subversion, RJD releases are cyclical. At the beginning of

the cycle, the release manager collects package updates, additional require-

ments from internal downstream consumers, and other content that should be

included in the next release. This process is aided by a “release dashboard,”

which shows the status of various input components to RJD and assists in

estimating the time for the next release.

During this period, as packages are updated in the RJD distribution, a

47

suite of integration tools runs to ensure compatibility between updated pack-

ages within the release. Since RJD is a collection of many components, this

testing helps ensure these components will function together. Packages that

pass testing are stored in a repository for later use.

After a major release of RJD, the release manager creates subsequent

patch releases to address minor bugs or faults in the release. These patch

releases only include minor changes so that users can safely upgrade to them

in place. This work usually occurs in parallel with the beginning of the next

release cycle.

5.A.5 Pre-release Testing

Prior to a release being made public, the artifacts are uploaded to

an internal distribution site and then tested. These tests cover the various

operating systems that RJD supports and target both the installation process

as well as the various components that come as part of RJD. Since most of

the emphasis of RJD focuses on the component packaging, the testing revolves

primarily around the installation process, the provided graphical user interface,

and the compatibility of the various component packages.

Almost all of this testing is automated, with manual testing being lim-

ited to brief tests for basic correctness. Throughout our interview, the subject

referred to “the tests,” and made no distinction between regression, feature

or other types of testing. He did describe the role of the testing as one of

ensuring proper integration of the various dependency components and the

48

proper production of the installer package.

5.A.6 Distribution

RJD is distributed to end users via a complete download from the

Internet (along with associated license files) or through an in-product upgrade

process.

5.A.7 Release Tools

To create a release, the release manager utilizes a suite of custom scripts

and tools that build the various components of RJD and then combine them

into a master distribution artifact. These tools can be scripted to perform all

the required steps to produce a final release. Intermediate components that

pass testing are stored in a repository, which the final tool then uses as input.

This modular approach enables more rapid release artifact creation.

To enable this modular release process, each release begins with a re-

lease plan, which is then codified into a recipe. The various release tools make

use of this recipe to determine which versions of packages should be built and

included in the final release. Because many individual components of this

recipe are orthogonal to each other, the release can be built incrementally,

and small changes do not require massive artifact recreation.

The testing of the release is also automated. Manual testing is involved

but only as a “sanity check,” as described above.

49

5.A.8 Changes in the Release Process

At the time of our interview, the release manager mentioned that the

release process had been changing. The interview subject had been the release

manager for several months and had been transitioning the release process

from a more complex one that a previous manager had used to a simpler one.

The previous release tools used a much more monolithic procedure,

with the entire release being built using a single command. This required a

complete and time-consuming re-build of the entire release whenever changes

to the release or tooling were made. Thus, small changes to subcomponents

would trigger a time- and resource-consuming rebuild of the entire release.

Because of these requirements, this system required a team of five platform-

specific people to manage releases.

With all the resources the previous process required, little time was left

to perform post-release testing. The interview subject called the old system “a

total disaster,” where “everyone was trying to get something and when we had

something, that’s what we’d call the release.” The current process requires

fewer resources, allowing more time for release artifact testing.

5.A.9 Process Failures

Most of the failures in the RJD release process have been eliminated

by moving to a more modular artifact build system, and the process has not

recently experienced significant delays or problems. In some cases, delays are

caused not by technical reasons, but by external ones, such as marketing and

50

infrastructure needs. While they impact the release process, these issues are

mostly about scheduling and package inclusion, and they are resolved through

consensus by the several concerned stakeholders within the company.

5.A.10 Summary

In summary, key lessons learned from this case include:

• Complex processes took too much time and resources, leading to faulty

releases.

• Communication with other teams helped to better meet their needs, as

in the case of working with upstream packagers and downstream users.

• Modular processes and tools improved release quality.

• Modular processes decreased release team size.

• Business concerns, which are tangential to technical issues, also impact

release content and schedule.

5.B Connect

The company studied as Case B produces and hosts an online social

networking platform, known as Connect. The company produces its own soft-

ware and also manages all the deployment and hosting of the software.

The interview subject was a member of the release engineering team,

whose role had previously been one of managing releases, version control and

continuous integration systems. As the company grew, these roles became

parts of separate groups, and his role became to focus only on release engi-

51

neering.

5.B.1 Product Description

The software for Connect is mainly written in Java and contains over

300 services that interact to produce the features displayed to customers. Re-

leases consist of these services bundled as web applications to run in a J2EE

container. The artifacts are these bundles, which include compiled code, and a

configuration to be deployed on hardware owned by Company B. This follows

an internal-customer release paradigm.

Even though the services could be deployed separately, the intercon-

nected nature and high coupling of the services limits this ability. As a result,

the interview subject characterized the software architecture is more mono-

lithic than modular, which, combined with the desire to do rapid releases, can

create a large amount of friction in the release cycle. This friction results from

the need to release all components simultaneously.

5.B.2 Release Steps

To create a release artifact, a specific revision is first checked out, it is

compiled and built, and the resulting artifact is published to a binary repos-

itory. These binaries are versioned for traceability and reproducibility. After

testing, the artifacts are then deployed to production environments.

Because the software ships only to internal customers, and these steps

are relatively lightweight, Connect can to be built and updated frequently.

52

Problems often occur not in the creation of the release artifacts themselves,

but in deciding what should go into the release and finding software faults

before they are published.

5.B.3 Release Cycle

Company B uses a “cadence” for Connect releases, wherein they at-

tempt to release new versions every two weeks. The size and complexity of

their software prohibits faster release cycles, but through experimentation,

they have learned that two week cycles allow for enough time to responsively

provide new features and bug fixes.

In the past, Company B attempted a quicker release cycle for only

certain classes of low-impact changes, such as critical bug fixes. However, this

was quickly co-opted by the product team to deploy new features, rather than

just bug fixes. These features were often hastily done and not fully tested,

which in turn led to the problem of “testing in production,” as users often

uncovered software faults.

As a result of these experiences, Company B only considers bugs that

are serious enough to impact revenue when breaking the regular two-week

cadence cycle. Even in these instances, these exception cases are tightly con-

trolled by product managers.

53

5.B.4 Tooling

In the course of our interview, the release engineer spent some time

discussing tooling, both in a general sense, but also as it pertains specifically

to Connect. Having written build and release frameworks in a number of

languages for a number of different systems, his thoughts were illuminating.

The key insight is that managers should think of release engineering

as a traditional manufacturing process, rather than a box with a collection

of tools. A disparate collection of tools and skills results in a mindset where

only certain people are trained for specific tools, and the tools are viewed

individually instead of as a piece of the overall process. This method leads to

a breakdown in the overall ecosystem.

Specifically for Connect, having multiple tools for various phases of the

release process led to a scenario that was not scalable as the system grew

larger. Lack of an overall model of the process drove this problem. In the

interviewee’s words: “you have to be able to model your process in order to

automate it, and all of your process tooling and machinery has to be driven

by that model.” The interviewee suggested that working from a model, rather

than a collection of tools, has led to an improved process.

The interviewee also observed that the use of tools can be a hindrance

if they impose too much structure to the release process. His organization

has seen some success by moving to a build system that allows for much more

customization of the tasks to make a build, but such a system requires more

54

discipline on the part of the release engineers. This discipline further shifts

the issues of release engineering from the technical to the social domain: by

introducing automation, resources become available for other tasks.

5.B.5 Release Process Failures and Deficiencies

When asked about deficiencies in the release process, the interview

subject responded that the these failures had been one of intense debate within

the company to that point. Even though there had been much discussion

about the failings of the current processes and how they could be improved,

no consensus had yet been reached. Release process improvement was a work-

in-progress at Company B.

One of the key factors was ownership of the process. The subject

remarked that in order to be successful, somebody has to “have ownership.

There has to be a group, a role which owns the release process.” The current

Connect process does not have such an entity, with different aspects of the

release process being split among a number of teams. The result is that the

process is static and difficult to change since such change requires coordination

between several entities.

This lack of ownership is manifest in a couple of different ways. In one

case, the group that owns the resources to build release artifacts is separate

from the people who are tasked with actually creating those artifacts, and

there is not a feedback loop for effective communication between them.

The software architecture also influences the release process. The com-

55

plexity of the software and its large degree of coupling means that dependencies

between different modules are hard to untangle. A change to a specific module

of Connect may induce a need to redeploy disparate parts of the system, and

these parts may have dependencies themselves, which compounds this prob-

lem. The problem of deploying a specific module then becomes the sum of the

problems of the transitive closure of all its dependencies.

Relatedly, during development every component is always built directly

from source, but during staging and deployment, this is not the case. In those

environments, cached versions of pre-built binaries are used to speed artifact

creation, but since this process is different from that used by the developers,

discrepancies in the resulting product may arise. Company B has largely

moved away from “environment-specific” builds, but other problems, such as

compatibility or configuration issues, still arise.

Differences between the various development, staging, and production

environments still pose problems, however. For one example, the database

size and quality is often different between them. The staging area does not

contain data comparable to the production systems, and since most of Connect

depends upon data to function, this difference means that testing often falls

short.

Commenting on the general cause of release problems, the interviewee

said that “very few of the challenges around release are technological” and

that some of the most challenging items he had faced were due to social is-

sues. Because development methods and developer behavior have such critical

56

impacts on the release process, educating developers was an important part of

working to improve the release process for Connect.

One of the additional social problems the interviewee mentioned was

a desire to imitate other companies’ release processes, without taking into

account the unique aspects of the language, the technology stack or other

components of one’s own system. The subject remarked that there is not a one-

size-fits-all approach to release engineering and that problems and solutions

are often specific to a particular piece of software.

Finally, business concerns often impact the release process. Within

Company B, there exists a constant attempt to balance the need to follow best

practices with the business need to ship products in a time-sensitive manner.

Previous release failures often resulted from attempts to short-circuit estab-

lished release procedures in an attempt to ship features rapidly. In the inter-

viewee’s experience, this often resulted in delays and longer times to release.

Generally, to recover from release failures, the team tries to push for-

ward in fixing the problem, rather than attempting to roll back to previous

changes.

5.B.6 Summary

Key lessons learned from the study of the Connect release process in-

clude:

• Social and organizational problems in release engineering include:

57

– A lack of ownership of the release process can impede attempts to

improve it.

– Attempts to imitate other release processes without considering is-

sues unique to the target software product can lead to failure.

– External business pressure to ship software for revenue purposes

impacts release timing, content, and success.

– The absence of feedback between developers and release engineers

can also lead to release problems.

• Tool support for release engineering impacts releases in the these ways:

– Automation can create reproducible release artifacts.

– Tools should be envisioned as part of the process, rather than dis-

crete components.

– Tool support should be scalable, so they can continue to function

as software systems grow.

• The monolithic architecture of the software project impacts the ability

to release individual components.

• Differences between development, testing, and production environments

creates opportunities for release failure.

• Many organizational stakeholders are interested in process improvement,

but they lack consensus on how to achieve it.

58

5.C ForRent

The company studied as Case C is a service-oriented software company

that runs a website allowing users to advertise and sell short-term property

rentals of personal real estate.

The interview subject for this case is a Java developer who performs

release engineering tasks for his team. This assignment was largely motivated

by his desire to improve his own experience by improving the quality of the

release tools he is required to use as a developer, along with prior experience

at other companies performing a similar role.

5.C.1 Product Description

The software created by Company C is targeted to their own produc-

tion environments; the only way that end users interact with the software is

through a web interface. The higher-level layers of the complete product pro-

duce output that a user directly interacts with, while lower-level layers are

services intended for consumption by other software systems.

The various services that ship as part of the application under study

were previously contained in a monolithic release artifact but have since been

split into separate deployable artifacts. The interview subject was quick to

point out, though, that simply splitting code into separate artifacts does not

change the monolithic character of the entire application and that a high level

of coupling still exists between different artifacts.

59

The subject pointed out that creating a more modular architecture, as

the company has attempted to do, presents its own set of challenges, both

generally, and in the release processes. Maintaining a modular architecture

implies maintaining a set of interfaces between components, which themselves

have to be kept stable between releases, adding additional process and cost.

Even if the code itself is modular, the interviewee pointed out that “you still

end up releasing everything all at once, because that’s the only way you know

that everything works together.”

5.C.2 Release process

Releases are deployed through test and staging environments. Testing

environments are used as features are being developed and any member of the

development team can promote changes to the test environment. The release

team promotes versions of the software into the staging environment to test

them before the releases flow into production.

For each release the team focuses for two weeks on a specific set of

features. The features that are complete by the end of the two-week cycle are

included in the release, while others may be postponed for the next release.

At the end of the cycle, a release branch is created for the release, which the

release engineers then promote into the staging environment. From that point,

bug fixes may continue to get worked on in the release branch, while the cycle

begins anew and new features are committed to the main trunk branch.

A separate Quality Assurance team tests the proposed release while

60

it is in the staging environment. If the fault level is deemed acceptable, the

release is deployed to production by an operations team. The entire process

is coordinated through an issue tracking system, though often real-time com-

munication with the developers is required throughout the process.

5.C.3 Diverse release processes

The history of Company C offers insight into the release processes there.

Company C started as a small company but grew through purchasing other

similarly-positioned organizations. As it acquired other groups, they continued

to build and release their software in their own way, and even now, separate

teams work independently and “do what they need to do,” although the com-

pany is attempting to standardize upon tools and processes. These product

teams are still distributed globally.

Some of this diversity stems from the inertia of the various tools each

group is using. One example the interviewee cited was a group using the Ant

build system, for which a company-wide standardization on a different tool,

such as Maven, would prove too costly. For some groups, such a transition

would be difficult but still doable, depending on the return such an investment

would generate.

In some cases, various development teams use the same tools, but in

different ways to meet their individual needs. As a result, the tools are cus-

tomized for specific teams and products, and processes diverge from the in-

tended standard. Though some of this is transparent at some level, it still

61

creates problems as custom uses of specific tools generates little documenta-

tion for reuse by other teams.

5.C.4 Process Automation

This diversity of processes means that various teams use different lev-

els of automation. The interviewee noted that automation is a highly valued

trait of a release process but that the disparate requirements of various teams

within a company limits that automation. Because certain teams manually

create their automation tools, and these custom tools often lack documenta-

tion, problems arise when the tools are used or abused in unintended ways.

One of the difficulties to automation that the subject discussed was

that releases consist of more than just code. Database schemas may need

upgrading, which results in content migration, while other external data may

also need attention as well. Often, these migrations are one-way, meaning

that no safe method exists to revert the changes once they have been applied

to production data. For small systems, it may be possible to duplicate the

pre-release data, but for large systems this may not be tenable.

5.C.5 Process Failures

Release failures at Company C are rarely code-derived problems, but

usually something tangential to the software itself. A configuration value may

have been missed, the database updated incorrectly, or the release tools have

changed in some way, all leading to process problems.

62

The interviewee identified a lack of automation in the process and an

inability to track configuration changes as key causes of database and con-

figuration problems. Because the process is manual, information must be

communicated out-of-band, and omissions or inaccuracies lead to additional

failure vectors. The solution, in the eyes of the interview subject, is better

automation and communication.

Other failures are caused by changes to the environment the code is

running in. Sometimes, these are the result of changes within the production

environment that break assumptions made by the underlying code. Other

times, it is the differences between the development, testing, staging, and pro-

duction environments that lead to problems. Although the release steps are

the same to deploy code to the staging or production systems, these environ-

mental differences can cause release failure. A specific example of this type

of failure was a change to the permissions of a disk mount in a production

system, which caused a software update to fail. The solution to such prob-

lems, according to the interviewee, is to standardize and automate, both the

process to deploy new code into production environments and the changes to

that environment that accompany the new code.

Given the current lack of automation and standardization, current solu-

tions to release problems often end up with a cluster of stakeholders physically

gathered around one of the operations team members as he attempts to deploy

the software. Developers, database administrators, and the operations team

all try to help solve the issue, since each possesses a piece of the institutional

63

knowledge needed to do so. While this may work in the short-term, it does

not lend itself to long-term solutions.

For larger issues of automation and standardization, the interviewee

identified the benefits to doing so, but mentioned that the costs of the existing

collection of systems and tools had not yet become sufficient to motivate the

business to invest the resources for standardization. He mentioned the very real

costs in terms of lack of feature development, as engineers work on improving

the tooling, rather than improving the product, and that in a competitive

business environment, this may not be feasible.

5.C.6 Summary

Important lessons learned in from the ForRent case study include:

• Standardization between development groups depends on the proper use

of release automation.

• In a heterogeneous environment, improved standardization requires ac-

ceptance from several groups, which can be difficult.

• Release failures do not have to be software faults, they can be faults in

other parts of the system, such as a database or configuration.

• A monolithic software architecture impacts release by requiring all com-

ponents to be release simultaneously.

• Differences between environments and tools leads to release failures.

64

5.D NetOS

The company studied as Case D is large manufacturer of networking

equipment, and the release process studied is the embedded software that runs

the devices. Even though this company manufactures a wide variety of devices,

the software on these devices largely derives from a common code base, known

as NetOS, which is itself a derivative of the open source operating system

FreeBSD.

The interview subject for this case is the head of the release engineering

team, whose responsibilities include nightly builds, builds required for testing

new hardware, builds that are put on the hardware as part of the manufactur-

ing process, and builds that end users can download to update their existing

hardware installations.

5.D.1 Product Description

NetOS is a full-featured operating system responsible for network rout-

ing within industrial networking equipment; it is based upon FreeBSD. The

software itself has a very monolithic architecture of tightly-coupled compo-

nents, not unlike the Linux operating system [8]. For example, the NetOS

modifications to FreeBSD are not limited to specific parts of the system, re-

quiring a complete rebuild when creating releases.

Additionally, there is not a concept of code or module ownership, but

all developers have access to all part of the source tree, with many different

teams potentially modifying the same areas of the software. At the time of our

65

interview, NetOS was undergoing a lengthy project to re-architect the code in

an attempt to add more modularity and ownership—along with stricter access

controls to the source code repository.

The release team for NetOS is responsible both for end-user facing

builds, and for generating nightly builds from branches in various stages of

development. The technical process to build both is similar, but the artifacts

they produce may undergo different post-release procedures and they are often

targeted toward different customers.

5.D.2 Release Team

At Company D, the release engineering and release management teams

are distinct and have separate roles and responsibilities1. Release management

is primarily responsible for the content of the release from a logical perspective:

what bugs will be addressed and which features added. Release engineering is

responsible for actually building the release and managing both the hardware

and software resources to accomplish that goal. Our interview subject was the

leader of the release engineering group.

Even though a specific group is tasked with release engineering, there

is much interaction with other groups in accomplishing their tasks. Release

engineers routinely interact with testing, release management, IT, and devel-

opment groups, and a significant amount of social effort is required to maintain

1The terms used in this section are specific to this company. Throughout most of this
dissertation “release engineering” and “release management” are used interchangeably

66

the trust required to create successful releases.

5.D.3 Release Cycle

NetOS has a cyclical release structure defined by periodic releases but

potentially very long development cycles for individual features. Release lines

are maintained for a number of years after shipping. Timing and content of

releases are often driven by customer needs and market demand.

Development for multiple releases of NetOS occurs simultaneously, as

various products require different levels of support. Some release lines may be

in a state of feature improvement, while others are open only for bug fixes and

other maintenance. The distinctions are maintained by branches within the

version control system.

As stated above, the release management group determines which fea-

tures will be in a specific release, and developers assigned to various tasks

check their fixes into the appropriate branch of the version control system.

Company D relies heavily upon their version control system to manage release

components and their relationships to each other.

Unlike some of the other cases profiled heretofore, NetOS is an em-

bedded system with much different maintenance and longevity requirements,

which also impact the release process. Users can not be realistically expected

to upgrade their router firmware every week, so releases must be solid. Because

of this difficulty in upgrading, NetOS has fewer public releases compared to a

web service, which may push out new releases every few days since the costs

67

of doing so are so low.

When the software becomes ready for a release, the release manage-

ment team creates a release branch in the version control system. The release

engineering team then starts making release candidates from the branch. Re-

lease candidates use the same build steps and infrastructure as nightly builds

and are intended to become releases if no serious faults are found. A critical

part of the release process is the creation of a manifest file that describes the

release and controls how it is distributed if it passes qualification.

5.D.4 Pre-release Testing

After a release is built, the produced images go to a system test group

for testing. This testing is a combination of automated and manual test of

the proposed images, which may differ depending on the type of build under

consideration. If this group rejects the release, the developers fix the issues

and the process begins again.

5.D.5 Distribution

Because the target users of NetOS are varied, the distribution model

also varies. Builds intended for installation on newly created equipment are

distributed through manufacturing, whereas subsequent updates are provided

by download from the Internet or a service technician traveling with physical

media to a customer location. The release manager, though, is largely removed

from the mechanics of distributing the software.

68

The interview subject indicated that due to software architecture con-

straints, NetOS is always shipped completely: Company D is unable to dis-

tribute incremental patches to the software. A team working on this capability

has spent over a year trying to implement it, but so far this capability has not

been introduced.

In addition to shipping releases to manufacturing and existing cus-

tomers, Company D must also adhere to escrow requirements, in that entire

releases must be put on a DVD and shipped to a third-party escrow agency.

5.D.6 Artifact Creation

To create a build, the release engineering team, either manually or on

an automatic schedule, creates a configuration, or manifest, for the release,

which then goes into a database. These configurations, as well as the sand-

box archived at the conclusion of artifact generation, provide all the requisite

information to reproduce a release.

A sandbox is the build environment for a release, whether is a release

candidate or a nightly build. Sandboxes are similar to the development en-

vironment and are created by checking out the branch and revision specified

in the release configuration. The automated process then builds the artifacts

from the sandbox and archives the sandbox for potential examination later.

Sandboxes are used by the support organization to assist in finding and fix-

ing problems for customers. By having access to the various nightly build

sandboxes, support teams can more easily determine what changes may have

69

caused or fixed an issue a specific customer is facing.

5.D.7 Release Tools

The NetOS process is heavily dependent upon automated tools for

building and tracking release artifacts. When a trigger for a build is acti-

vated, either manually or through a time-automated process, the automated

system begins checking out, building, and archiving the release. The tools also

manage how the release is described and can be reproduced. The inputs, such

as what version to build and the target hardware to build it for, are specified

manually as part of the kickoff process. The progress of a particular build can

be queried through a command line interface or a web page.

Both the inputs to the release, the environment the release is built in,

and the log files generated from the release process are archived to allow for

later analysis. Releases intended for end-user consumption are also archived on

optical media. The entire process requires significant computing and storage

resources, as the size of the release sandbox can be quite large, on the order

of 150 GB.

To ensure timely completion of builds, the build and release processes

are housed on a set of hardware completely distinct from everything else at

Company D. A typical build takes several hours, though one of the goals of

the attempt to introduce more modularity and ownership of those modules is

to decrease this time by avoiding unneeded compilation of unchanged units.

70

5.D.8 Changes in the Release Process

In an effort to streamline development and make shipping code easier,

the entire company that produces NetOS decided to shift from CVS to Apache

Subversion for their source code management. The release engineer for NetOS

said this change allowed developers to better use branches and other features

of the version control system, which further improved the release process. This

eliminated much of the friction of development and also release. This was one

part of a wide-ranging change in process for the entire company.

Company D was also planning additional changes to the development

process. Because the software produced in development is the input to the

release process, changes in software architecture or process often impact the

release process. The interview subject was unsure what those specific changes

would be but was preparing to implement them as needed.

5.D.9 Weaknesses

The release manager who was our interview subject identified several

weaknesses within Company D’s existing release processes. These are outlined

below.

5.D.9.1 Storage

One of the largest restrictions of the release process is the hardware

resources used to create and manage the permanent archive. A technical re-

striction on the size of Company D backup storage limits volumes to sizes of 1

71

TB. The archived sandboxes are usually around 150 GB, which means only six

or seven can fit in the same volume, requiring a significant amount of planning

and coordination in creating and managing these volumes. This restriction

limits the level of automation available to the release process.

The technical issue of more disk space is a real one for this release man-

ager, but its foundations are more social than technical. Aquiring new storage

requires business justification, which is difficult when release engineering is

viewed as a cost center by the business. On several occasions during our inter-

view, she emphasized the amount of space required for their sandbox archives

and the difficulty in justifying its acquisition costs to her management.

To compound this issue, special releases can put extra demands on the

archive system but are rarely accounted for when planning archive require-

ments. To combat this problem, the release engineering manager has been

attempting to move the cost to provide the archive requirement to the units

working on these special projects, shifting the burden of resource acquisition

to those requiring it.

In many cases, the interviewee mentioned that release engineering can

be seen as a drag on company resources, as it is typically considered a support

organization and not a revenue-generating unit. The practical implication

is that the release team does not have the budget or political influence to

accomplish the objectives it has been tasked with.

72

5.D.9.2 Staffing

The release engineering manager also remarked about the chronic staffing

problems that her group faces and the lack of formalized institutional memory.

Much of the knowledge and nuances of the release process are known by only

a few people, and their loss would negatively impact Company D’s ability to

produce releases.

5.D.9.3 Social Issues

During our interview, the NetOS release manager pointed out that

many of the issues were ultimately social ones, in that they were caused by

human decisions and failures, rather than technical ones. The role required a

high-level of interaction with a number of different groups, any of which could

cause problems with the process.

At times, release engineers would attempt to short-circuit the process

by manual intervention and restart of release processes. Such attempts cir-

cumvented a number of the protections afforded by the release process and are

discouraged. Education of those involved proves to be an ongoing task.

“Integration engineers need to be social,” our interview subject pointed

out, due to their need to interact with a large and disparate group of people.

In Company D, such engineers are also in high demand, and the team is often

required to have someone available even though they are only funded to be a

business-day organization.

73

5.D.9.4 Software Architecture

The monolithic nature of NetOS also proved to be a source of trouble

in the release management portion of the process. Since no team had clear

ownership of specific parts of the software, developers are often making con-

flicting changes that requires significant time and cross-organizational effort

to rectify. This is similar to the phenomenon observed in [35].

The release manager’s proposed solution for this is would be group- or

team-ownership of specific components of NetOS, which would hopefully lead

to fewer conflicts than the current company-wide ownership paradigm. Work

on a more modular architecture toward this end is ongoing.

5.D.10 Example of Anomalous Release Experience

A high-profile and potentially high-revenue customer wanted new fea-

tures prematurely and wanted them in a supported set of release artifacts. A

custom version of NetOS was produced for that customer, who proceeded to

install it beyond the intended subset of trial scenarios. The features included

in this custom release had not yet entered any shipping product and were

considered experimental.

In producing the release artifacts, the release engineer had no technical

way of differentiating the custom and experimental nature of this release versus

a nightly build or a traditionally supported release. In essence, this was a

development build, packaged as a supported release. Because no such ability

was available as part of the release process, the release engineer was required

74

to manually adapt the automated process to accomplish her goal, introducing

delays and errors.

Additionally, because of the implied guarantees surrounding a release of

NetOS, the manager of the release engineering group required the requesting

group to get high-level approvals from within Company D before she would

create such a special one-off release. This was both for the resource require-

ments involved, as well as the desire to indemnify herself should the release

cause further problems in the organization.

In total, the special effort required for this release was significant, but

the prospective customer decided not to purchase the product.

More generally, a desire to ship customized products from the same

monolithic code base leads to many custom releases of features from various

branches, which creates management logistics problems. Significant amounts

of resources are being spent on these custom release targets.

5.D.11 Summary

Important issues about release engineering discussed in the above study

include:

• Social difficulties with release engineering included:

– Organizations often place unrealistic expectations of the release en-

gineering teams.

– Pressure from outside business units can cause release engineers to

deviate from established process for custom releases.

75

– Developers often have antagonistic feelings toward release engien-

eering teams.

• The monolithic software architecture constrained the ability to release

independent components and bug fixes.

• The boundaries between release engineering and other part of the soft-

ware development process are not well-defined.

• Sales, marketing, and support interactions all eventually influence the

release process.

• Good automation can still lead to release failures if manual intervention

is required.

5.E Publish

The company studied in Case E is a major provider of online news

content. Writing their own software allows editors and authors to manage this

content dynamically, giving them more editorial control and flexibility.

The interview subject for this case is one of the engineers responsible

for creating the release pipeline used to move the software from development

to production environments.

5.E.1 Product Description

This software controls the publishing platform for Company E’s con-

tent, with requirements to make the content available in multiple languages

and highly configurable. This software, known as Publish, exists to tie various

76

components of Company E’s ecosystem together to allow non-technical staff

the ability to create and publish content. To do this, several separate software

modules come together to create the final page the end user views.

The Publish software is responsible for orchestrating the interactions

between these various pieces of software. Specifically, it exists to integrate

the publishing tools, back-end API layer, the front-end, and previews into a

single package. This package is deployed on servers owned and maintained by

Company E, so this software’s customers are entirely internal.

Even though the software has defined boundaries between itself and

various subcomponents, features are often co-developed, resulting in coordi-

nation between various teams as the software components move through the

release pipeline. This pipeline has several environments, each with their own

dataset and hardware, and dependency components are expected to maintain

these environments for consumers to use when testing. These environments

include development, staging, and production.

5.E.2 Release Processes

The team that the interview subject works with has recently changed

its release process from being a segmented part of the development process to

something that occurs as part of development. Software release is visualized

as flowing from one stage of development to another, with the result being

that it ends up in production.

The interviewee pointed out that there is not a sense of being “done,”

77

as the software is being continuously adapted and improved. In this respect,

there is never a completed software product, as new requirements continue to

be added and implemented.

The lack of a sense of completeness, combined with the continuous flow

of software, means there is not a definite meaning of a release cycle, as software

components are packaged together and deployed to production servers ad hoc.

5.E.3 Tools

To accomplish the goal of software flow, new tools were recently written,

including a custom build and release pipeline, which has the stated goal of

delivering software every week or every day. To accomplish this, the pipeline

supports the notion of “software hiding,” which allows incomplete software to

be deployed in an inert fashion with little consequence to production systems.

Developers check finished work into source control. The continuous

integration system builds the subcomponent and runs the various static and

dynamic checkers. Assuming the tests pass, the component is packaged and

joins the pipeline to be assembled with other systems to go into production.

For release, all the various packages are bundled together into an im-

mutable super-package that then traverses the pipeline as an atomic unit. The

only exception to this atomicity property is the interface specification for the

super-package, which changes depending upon the environment it is deployed

to.

78

5.E.4 Testing

The continuous integration platform helps catch issues during develop-

ment and prior to code entering the release pipeline. New code is continuously

built and run through the automated tests prior to being promoted up the

pipeline, and any faulty versions can easily be backed out of the pipeline.

One important part of pre-release testing is backward compatibility

with the dependency modules. One of the features of the staging environ-

ment is the ability to test against both the current and future versions of a

dependency package, so that when the future version is eventually promoted,

Publish does not encounter backward incompatible changes. Agreements exist

between the various teams to ensure that such incompatible changes are fixed

within a short time window, usually on the order of a few hours.

5.E.5 Challenge with the Process Tools

While the above flow and tooling represent an ideal scenario, this goal

has not yet been completely realized, for several reasons. First, not all de-

pendency teams are set up to provide appropriate testing environments with

the appropriate data. For instance, dependencies that have existed for a long

time, such as user management, do not have the resources to fully implement

a staging environment with full production data, due to both the scope of the

data and the maturity of their existing platform.

Some dependency teams have the opposite problem, in that they are

new and immature and thus do not have the appropriate response time or

79

service level guarantees to enable the rapid finding of issues. This decreases

the general effectiveness of the continuous deployment pipeline.

The current release tools are not yet properly componentized, which

causes a lack of flexibility in the release process. The software is composed of

multiple dependencies and components, and if a single component fails, the

system will currently reject the entire bundle as faulty. The interview subject

hopes to one day have a system that would simply exclude the faulty version

of the component, using an earlier iteration to complete the release. Such a

system will reduce the number of teams able to block the release flow with

problems in their software.

5.E.6 Observations

The interview subject made some interesting observations regarding re-

lease engineering as it applies to his process. Specifically, he cited the example

that when a developer checks in software that breaks other parts of the system,

there are often additional people watching for that breakage, and the developer

quickly fixes the problem due to the social convention of not allowing broken

code into the system. Such principles, applied generally, help create the right

incentives to prevent social-based release process failures.

The interview subject also emphasized how important it was to him

to create a permissive environment for software release, rather than creating

barriers to release. He emphasized balance between features and bugs and a

concious acknowledgement that not all released software is fault-free. Strong

80

functional tests ensure that major features work and the software continues to

flow.

One of the key points he made was that software only has value when

it is released and that providing this value to the business is what matters.

Taking release processes into account should be seen as part of the process of

maximizing developer productivity, not as counter to it. Defensively designed

release processes can impede the release of software with the goal of ensuring

better quality. However, such processes can often have negative effects when

attempting to release timely fixes to software.

The subject also touched upon the impact of release engineering in the

greater development cycle, mentioning that small changes to release and build

processes can have large results since they impact a large number of people. In

doing so, the subject cited the theory or constraints [18] as being an important,

but often overlooked, part of designing release processes.

5.E.6.1 Previous Experiences

The release engineer also shared some experiences with failure in previ-

ous experiences with release process at other companies. Some of these include

monolithic release blobs, problems with late integration of feature branches

during development, and test systems built ad hoc. All of these issues led to

more faults in the software and more resources spent fixing those faults.

Because the release process was not automated, testing was not a pri-

ority. The software had to deploy to over forty different types of environments,

81

but only one or two of these environments were tested before the release be-

cause manual testing was too expensive.

5.E.7 Summary

The key lessons learned from the Publish case study are:

• Not all releases are discrete; Publish uses a continuous “flow” paradigm.

• Modular software architecture allows individual features to be released

or held back.

• Maintaining a modular architecture requires discipline between teams to

maintain and support appropriate interfaces between releases.

• Improvement to the release process can have wide-ranging impact be-

cause of the number of people affected.

• Social implications: release engineers should facilitate code release, rather

than look to prevent it.

5.F ForRent Payments

The company studied for Case F is the same as that for Case C, namely

a producer and provider of a social networking platform known as ForRent. In

Case C, the interview subject noted that the company had a number of diverse

teams working on various projects. The process studied herein as Case F is a

separate set of code within ForRent, and while the overall structure remains

similar, this case has its own set of unique failure modes.

The interview subject for this case was a member of the development

82

team for the payment processing system. While not a dedicated release engi-

neer, he does perform release duties on a rotating basis with the rest of the

team. Within a release cycle, the then-current release engineer usually spends

about twenty percent of his time working on release-related assignments.

5.F.1 Product Description

This product is a subsection of the aforementioned ForRent system

(see Section 5.C), focusing specifically on the payment processing aspects of

ForRent. The entire ForRent system is conceptualized as a collection of REST-

ful web services [17] interacting through a set of well-defined and understood

interfaces.

5.F.2 Release Tools and Environments

The ForRent payment system uses the same hierarchy as the rest of

ForRent, with one crucial difference. The development, testing, and staging

environments are the same, but because this specific piece of software works

with money transfers, the production environment is much more secure. As a

result, the expense and resources of replicating this special production envi-

ronment in lower levels of the release stack has not been made. In addition,

these restrictions mean that developers have much less access to the production

environments than a typical process, making diagnosing and fixing problems

more difficult.

A set of automated tools assists in moving code between environments

83

and making releases. The system tracks developer commits to the source code

repository and automatically builds release artifacts. Developers and release

engineers can select these builds for deployment on the testing system. The

quality assurance team then has the opportunity to write and run functional

tests against this new code in the testing environment for about a week, after

which it is promoted to the staging environment.

The staging system is envisioned to be a mostly-stable environment

where integration testing with other components occurs for another week be-

fore the software is release into production. The same tools accomplish all the

promotion steps, with the developer/release engineer managing the first two

steps, while the operations team coordinates the promotion to production.

5.F.3 Release Failures

The interview subject indicated that the largest set of release failures

was due to the differences between the development, testing, staging, and

production environments. Separate property and configuration files, which

are not part of the standard release artifacts, define these differences on a per-

environment basis. The interviewee mentioned that almost all of the release

problems for his team are related to the inadvertent misapplication of this

configuration information during the release. The problem is easily solved by

updating the configuration, but preventing it is largely an issue of remembering

the manual update step outside of the typical release process.

The other common failure mode occurs when the modularity and ab-

84

stractions of the system break down. In the interview subject’s words:

You have this service oriented architecture, and then suddenly

that’s out the window, because it’s not really specific services. It’s

just a bunch of services that are really just one big service, because

they’re all dependent upon each other.

Ensuring separate services is dependent upon maintaining a stable in-

terface between those services. In the experience of the interviewee, when those

interfaces work, it makes producing releases much easier since components can

be deployed independently. Maintaining a stable interface requires effort, but

his experience was that the results are usually worth it. Conversely, when the

interfaces break down, the release process requires much more coordination

between components.

5.F.4 Summary

In short, the ForRent Payments study addresses the following points:

• Non-standard production environments require non-standard, and po-

tentially fragile, tools.

• Maintaining interfaces in a modular architecture requires effort, but is

ultimately worth it as releasability improves.

85

5.G WebCan

The company studied as Case G manufactures networking applicance

hardware to be deployed behind the firewall for large enterprise customers.

This company also produces the software that runs the devices it sells, and it is

this software which is under study in this case. This software runs the internal

hardware and provides interfaces for external measurement and diagnosis of

these appliances.

The developer interviewed for this case has spent several years in re-

lease engineering for a variety of different companies before filling his current

role. At Company G, he works with the tools team, helping to manage the

version control system and other infrastructure needed for both development

and release. While he is not directly involved in release engineering, he works

with the release management team and is familiar with their processes.

5.G.1 Release Process

Releases from one interaction to the next are generally incremental as

bugs are found and reported, and development managers and release managers

meet to discuss which issues should be addressed in subsequent releases. Using

a checklist system, issues are tracked, and when the list of issues targeted for

a specific release is completed, that release is the shipped.

Releases happen on the order of months, anywhere from two to four,

depending upon the issues slated for that release and the ability to find and

fix them. The release is then provided to the tech support group, which

86

coordinates with their members in the field to get the release into the hands

of customers.

5.G.2 Previous Experiences

In addition to his current role, the interviewee shared several insights

based upon previous work doing release engineering at a number of his previous

companies.

5.G.2.1 Process Design

The subject shared an experience at a previous employer when a com-

mittee was attempting to design a release process. One of the participants in

that committee pointed out that the people carrying out the process are in fact

human, and as such would make occasional mistakes. He felt that by creating

complex processes, the committee was setting these people up for eventual

failure. This insight led to more simplified release processes in that company.

The interviewee also recounted numerous instances when processes were

altered or ignored, usually due to priorities dictated to release managers. These

alterations typically led to failed releases, that had to be fixed at great cost to

the company involved, negating the perceived benefit of altering the process

initially.

87

5.G.2.2 Causes of Faults

The interviewee also described causes of faults he had seen among ear-

lier employers. One of these was making assumptions in the process descrip-

tion, which led to omitted incorrect steps. Sometimes this itself is caused by

sloppily adopting previous processes for the project at hand and not being

zealous in updating the process for subsequent projects. One of the ways of

coping with this problem is to ensure each build creates an installable artifact,

which can then be tested to help maintain quality.

Another cause of faults that the interviewee identified occurs when

people become “slaves to the Process.” In other words when the process itself,

and not the release, became the goal, and not the release, participants could

overlook other causes of failure in their singular focus on the process. In

addition, when faults did eventually occur, people were often more focused on

finding and affixing blame, rather than fixing the problems, which then led to

further problems.

The interviewee also drew the connection between software architecture

and process design, in that software that is modular can reduce process scope

and thus the potential for failure. Since components of a loosely-coupled soft-

ware system can often be released independently, their release processes can

themselves be compartmentalized, helping make the overall system process

easier to conceptualize.

88

5.G.3 Summary

In summary, the main points emphasized by the interview subject for

Case G were:

• Complex release processes provide more opportunities for process failure.

• Lack of automation can result in assumptions about the release process.

• Both developers and release engineers respond to social incentives to

improve the release process.

• An open question exists as to whether release engineering is a technical

or managerial role.

5.H Subversion Binary Packages

The company profiled in this case creates binary packages of the Apache

Subversion open source project discussed in Chapter 3. Because the open

source community does not distribute or endorse binary packages, the roles of

producing and distributing artifacts suitable for most end users falls upon third

parties. Company H is one such third-party who creates binary Subversion

artifacts for a number of platforms as a means to increase adoption (and the

market for their proprietary products).

The individual interviewed for this case fills several different roles within

the company, but one of them is the release manager for Company H’s Sub-

version packages. In this role, he monitors Subversion releases, writes and

manages the automation software required to build and package Subversion

89

distributions for various platforms, and coordinates the distribution of the

artifacts to those platforms.

5.H.1 Release Process

As a redistribution of Apache Subversion, the release processes for

these binary packages is somewhat time-dependent upon the release process

of Apache Subversion itself, described previously in Section 3.1. Company H

attempts to release the binaries as closely after the formal Subversion release

is announced as possible, for both major and minor releases. In order to meet

this time constraint, the binaries’ release process begins when the open source

project posts candidate Subversion release tarballs for pre-release testing and

continues in parallel with the Subversion process.

To actually generate release artifacts, the release manager downloads

the Subversion candidate tarballs and combines them with a set of scripts

appropriate for the target platform. After editing the documentation included

in the release artifact, the release engineer runs the scripts to build and package

the release. After the candidate binaries are produced, they are staged to an

internal distribution system for further testing and to await the announcement

from the open source community to signal the final release.

The testing primarily focuses on the artifact packaging, while relying

upon the upstream open source community to catch faults in the software

itself. This testing step is not automated, and the release engineer identified

the testing process as being a bottleneck in the release process.

90

5.H.2 Process Automation

The process described above is a mix of automatic and manual steps.

Items such as compiling the binaries, running the tests, and packaging the

results into a artifact for distribution are done with automated scripts, while

documentation and other tasks are handled manually. The level of automa-

tion also varies depending upon the target platform and the knowledge of the

release manager on that platform. For instance, the release engineer is more

comfortable on POSIX-based systems, so the tooling is simpler when compared

to Windows.

The interview subject specifiably mentioned the lack of continuous in-

tegration as a weak area in the process design. Instead of constantly building

test binaries using the source code available in the public Subversion repos-

itory, the release engineer only builds binaries from release candidate code

distributions. The primary reason for this is one of resources: all the bi-

nary building environments are virtual machines hosted on the same physical

hardware, which would not be sufficient to handle the multiple parallel builds

required by continuous integration.

When asked about the possibility of further automating the process, the

release manager mentioned that several of the steps could be improved. How-

ever, he was not convinced that the effort required to implement the increased

automation was worth the time he would save in the future.

91

5.H.3 Failures

One of the primary sources of failure mentioned by this release engi-

neer was the unfamiliarity with Windows as a target platform. He spent some

time setting up an initial build environment several releases prior to our inter-

view, but since that environment is (mostly) functional, he just uses it as-is.

When changes to Subversion require modifications to the Windows environ-

ment, the release engineer must spend a large amount of time attempting to

adapt it. This lack of familiarity contributes to the lack of automation on this

environment, as mentioned earlier.

In one case, our interview subject mentioned that the testing process is

a key bottleneck in the release process because most of the testing is completely

manual. Because of the time pressure and the lack of automation, sometimes

problems are not caught in testing. The subject spoke of an instance when

some of the lesser-used parts of the distribution had errors that were not caught

in testing. The upstream Subversion testers do not test all the platforms that

the third-party binaries are targeted for, so relying upon the upstream testing

is not complete. Because the tests were not automated, less code was covered,

and faulty software was released.

Another specific instance of failure occurred when releasing a new major

version of the Subversion binaries. Typically, Subversion bug-fix releases differ

slightly in their dependencies and packaging requirements between them, but

major releases may have more fundamental differences. In the case of one

major release, the engineer did not start working on the packaging scripts

92

until only a few days before the actual release, even though he had been given

significant lead time by the open source project. As a result, the binaries were

not able to be released in concert with the upstream Subversion source code,

resulting in significant angst within the business and a significant amount of

extra work for the release engineer. Ultimately, both the release engineer and

his manager identified the cause as a “project management failure.”

Lastly, the largest problem with the current release process is that

it depends upon the release engineer to do it. Because of the combination of

manual and automatic steps and the lack of documentation, the current release

engineer is the only one who can produce the release artifacts. As he put it:

“I can’t be on holiday during Subversion releases” because of the business goal

for timely binary package releases. This creates additional stress on the entire

team as well as the release engineer.

5.H.4 Summary

The key points covered in this case study are:

• Failed releases often are caused by lack of resources allocated by project

management.

• Business needs can drive release timing and processes.

• Unfamiliarity with tooling and platforms can reduce the level of automa-

tion, increasing effort and the possibility of release failure.

93

5.I CodeBit

The company studied as case I produces a suite of data processing

software exposed to customers via the Internet. This software runs on servers

owned and operated by Company I and collects, stores, and processes customer-

provided data streams internally. The software is released as a monolith to

internal customers. In addition to externally-facing services, developers also

create tools destined strictly for internal deployment, such as nightly data

processing jobs.

The interview subject for this case primarily fills a development and

architectural design role but also assists with releases. Within the company,

the release responsibilities for CodeBit are shared by both the operations group

and developers, and in this developer’s current role, he has been working

to help redesign the software architecture to better accommodate improved

release processes.

5.I.1 Release Process and Artifacts

The CodeBit architecture is highly monolithic, consisting of a number

of tightly-coupled modules, which requires the entire system to be released

simultaneously. These releases are produced approximately every three months

by using the then-current contents of the version control system. Often, the

development and operations teams doing the release just use the most recent

contents of the code from the source repository, but occasionally they will use

a specific revision if other known issues exist.

94

The system uses the version control system and the RedHat Package

Manager (RPM) to create and distribute releases. As developers write new

code, they also create and update deployment scripts for the new software. All

binaries are distributed as RPMs, and developers build and test these packages

as they implement new features. Even though the software may be split across

several discrete package artifacts, from the engineer’s perspective it appears

as a monolithic project because the various packages are so tightly coupled as

to remove the possibility of releasing them independently.

As the time for release approaches, the development team enters a

“code freeze” state, during which changes to the main source code branch are

restricted. When the operations team is ready to update the servers with the

new software, they checkout the latest code from the version control system,

build the RPMs, and then push the RPMs to an internal package repository.

From this repository they then update the production environments using the

standard RPM tools.

Engineers do ad hoc testing of the packaging scripts and system dur-

ing development, but the interview subject did not elaborate on additional

software or artifact testing as part of the release process.

5.I.2 Release Failures

Several types of release failures were identified by the developer being

interviewed. One of them was a social problem relating to the “code freeze”

period before release. Specifically, the developer said that because operations

95

pulls the latest code from the source code repository at the time of release,

adhering to this quiet period is critical to ensure stable software, yet the social

problem of enforcing developer discipline was difficult to solve. Developers

can easily rationalize additional changes during the quiet period, and such

collective behavior undermines the stability of the software being released.

As a result, another type of failure often occurs. When the operations

group does pull the most recent set of changes from the source code repository,

it is possible that the latest version has unresolved, or newly-introduced bugs.

Recovery from this type of problem is relatively simple, in that the operations

group can just use a previous version from the version control system. The

main problem, though, is the downtime caused by the software faults, and

the developer effort required to determine which previous revision does not

contain them.

Finally, because the software is released as a monolith, release periods

are large. This creates the temptation by developers to cherry pick parts of the

software to release independently. The interview subject mentioned that most

times when this happens, it results in failure, as the new subsystems do not

interface correctly with the old ones. In some cases, the newer module would

try to read data that did not exist, or access other systems in unanticipated

ways. Recovery from these types of problems was difficult, often requiring

additional development and an intermediate release to address the issues.

96

5.I.3 Attempts to Change the Architecture

The developer-architect we interviewed discussed the current effort to

rearchitect the software in a more modular way, both for better software orga-

nizational purposes, and to facilitate improved release processes. While both

benefits were valid in his mind, he said that project managers could actually

understand the benefits of improved release processes more readily, and that

was the basis upon which the development team got approval to undergo the

change.

Although the team readily acknowledged the benefits to such a change,

it was not without its challenges. For instance, the subject mentioned that for

developers accustomed to envisioning the system as a single monolith, it was

difficult then to transition to viewing it as a set of interconnected modules.

This social issue was also compounded by the technical one that when releasing

a monolith it is easy to see that everything works, while a more modular

architecture and release structure could allow untested configurations to be

released, resulting in the potential for unknown behavior.

5.I.4 Summary

In summary, our study of the CodeBit release process yielded the fol-

lowing insights:

• A monolithic software architecture requires the entire product be released

simultaneously.

97

• Release failures often occur when engineers attempt to release subcom-

ponents of the monolithic project independently.

• Social issues surrounding release include:

– Developers may not be disciplined enough to enforce a pre-release

“code freeze.”

– Changes to the architecture are resisted because they are seen to

limit developer freedom.

• The benefits of a change to a more modular architecture were recognized,

yet attempts to do so were resisted for cost reasons.

98

Chapter 6

Validity

The preceding case studies contain various threats to validity, which we

discuss below. A complete discussion of validity is left to other sources (see [40]

and [52]), but to be generally useful, this research should have construct,

internal and external validity. Here we briefly discuss potential threats to the

validity of these studies and its results.

6.1 Construct validity

Construct validity refers to whether specific measurements actually

model independent and dependent variables from which the hypothesized the-

ory is constructed. In other words, an empirical study with high construct

validity would ensure the studied parameters are relevant to the research ques-

tions and indeed measure the abstract concepts intended to be studied.

The target class of interview subjects, along with the semi-structured

nature of the interview process helps to provide construct validity in our stud-

ies. The interview subjects are practicing release engineers with many years

of experience, who are well-positioned to provide insights into release process

failure.

99

Interviewer bias could affect the construct validity of our studies, but

we tried to stay as neutral as possible to avoid biasing the subject matter.

We also allowed the interview subjects to “wander” and find topics of their

own choosing beyond the fixed set of initial questions. This wandering meant

that some topics were not fully addressed by all interview subjects, and that

different subjects used different terminology to describe similar issues. Possible

confusion over terminology, such as “release engineering” itself, could also

impact the study validity.

6.2 Internal validity

Confounding factors represent a major threat to the internal validity

in empirical studies. As the results in Section 4.1.2 show, selection bias is

a prevalent problem in software engineering research, and the same problem

could be present to limit the validity of this research. Internal invalidity can

be difficult to counter since changes in the variable under observation may be

attributed to the existence or variations in the degree of other variables that

are related to the manipulated variable but not explicitly modeled variables.

Each of the organizations described as subjects in Chapter 5 are unique,

with many different factors impacting their release processes. The common

element between these organizations and our interview subjects was their in-

volvement in the release process. That is the area we focused on in our in-

terviews, but it does not remove the possibility that additional hidden factors

impact the internal validity of this work.

100

Because the interviews dealt primarily with past mistakes, there may be

some tendency for interview subjects to self-censor their recollection of events.

They may downplay their own involvement in creating the failed releases, or

they could omit details which may prove embarrassing to themselves or their

company. From our experience with the interview subjects, it seemed they

were eager to share these experiences as a type of therapeutic exercise, but

the possibility for selective memory still exists.

6.3 External validity

External validity refers to the applicability of study or experimental

results to domains beyond those under immediate observation. A study is said

to have a high degree of external validity if the conclusions hold throughout

the study domain. In most scientific disciplines, researchers prize studies with

external validity, since the results can be widely applied to other scenarios.

While these results accurately describe the release processes in the or-

ganizations under study, one might argue that release processes vary so much

both temporally and spatially so as to make these results difficult to generalize.

Although this threat to validity is a concern, there are still several common as-

pects and lessons that are widely applicable and thus generalizable to a wider

audience.

Even though the difference between proprietary and open source devel-

opment organizations may not be as large as generally believed [27, 34], our

decision to focus on proprietary software systems could also be a threat to

101

external validity. We feel this threat is justified, but not eliminated, by the

additional insights gain by using proprietary systems.

102

Chapter 7

Release Process Theories and Analysis

In this chapter, we discuss general observations on the release engineer-

ing processes described in Chapter 5. From these cases and observations, we

also describe four theories of release engineering. Throughout, we present both

common and unique failure modes as well as recovery mechanisms across the

various cases under study.

7.1 Observations

Following are insights gleaned from studying the study cases, as well

as observations given directly by the subjects themselves.

7.1.1 Team Organization

One of the more interesting aspects of release engineering, from an or-

ganizational perspective, are the methods various organizations use to organize

their release engineering tasks and the teams to accomplish those tasks. For

instance, some study subjects have dedicated release engineering teams, some

delegate the assignment to specific individuals, while other subjects rotate the

release duties among team members. In each instance, software complexity

103

plays an important role, since complex systems, such as NetOS, require more

resources than simpler ones. To paraphrase the subject from Case B, the

software constrains the release process.

7.1.1.1 Team Structure

Divisions also occur along process lines, separating the questions of what

should go into a release, from the issues of when a release is to be produced and

the mechanics of how a release artifact is produced. While interdependence

may exist between these functions, some organizations give each a large degree

of latitude in their operation.

For instance, the NetOS team has completely separate teams for release

management and release engineering, whose roles are to define and produce the

release, respectively. RJD, on the other hand, has a single release engineer who

both defines release schedule and contents, and has built much of the tooling

and infrastructure needed to create release artifacts. Table 7.1 illustrates the

team structure for each of the cases in Chapter 5.

For groups which had no redundancy, such as RJD or the Subversion

binary packages, the lack of additional release team members represents a

potential source of failure. In cases where the sole release engineer is not

available, or no longer with the company, the institutional knowledge needed to

create a release may be lost. Organizations can partially counter this through

improved documentation, but in practice having multiple individuals familiar

with release process is the most effective solution.

104

A B C D E F G H I
Dedicated team x x x x x
Dedicated part-time individual x x x
Rotating part-time individual x

Table 7.1: Release Team Composition

7.1.1.2 External Communication

Releases are not made in a vacuum, and release teams often have to

communicate with a number of other groups and individuals to complete their

assigned tasks. The various release engineers we interviewed spoke of inter-

actions with several different groups, including sales, development, support,

testing, manufacturing, operations, and IT. The NetOS engineer specifically

mentioned that people who work on her team must have good social skills,

since external interaction is frequent.

Often times, though, the release team is viewed by external groups as

an impediment to their success, and hostile attitudes can develop, as some-

times happened in the past with NetOS. This environment is antithetical to a

productive release processes in many cases.

7.1.1.3 Release Engineer Personalities

Several of the interview subjects, such as those from WebCan, NetOS,

and Publish noted that release engineers generally fall into two categories: the

technical and the managerial. Sometimes the traits are combined into a single

individual, but often people who come to release engineering do so through

105

either of those channels. These characteristics often apply to teams and their

roles, in addition to just individual people.

The technically-derived individuals and teams, in the subjects’ expe-

riences, were often focused on the tools required to automate the release. In

their view, these individuals are often pragmatists, treating release as just a

necessary set of steps needed to get software deployed. The temptation for

this type of individual is to blindly follow whatever checklist is provided, not

accounting for any implied assumptions. While the presence of these assump-

tions may be an error in the process, an astute release engineer will take them

into account when following it.

In contrast, the managerial release individual usually focuses more on

the management tasks. In some respects, this person cares more about the

process and its organization than the technical individual but may lack the

ability to best implement that process. In the experience of the WebCan

subject, this type of individual may then become focused just on the process

itself, which adds overhead, complexity, and the potential for failures.

7.1.2 Software Domain

Other aspects of a software project that affect its release process are

the domain of the software, including its usage model, and the development

tools used to build and track the release environments and artifacts.

Several of the subjects we talked to produced software for in-house

customers or deployment to servers controlled by their organization. Shipping

106

to an in-house organization often means developers can release multiple times

in a short period, even several times a day. This requires a low-overhead

release process, but also allows for occasional process failures, as restarting

the process is not a high-cost activity.

Shipping to internal customers is not without its drawbacks, however.

As the ForRent Payments subject mentioned, internal customers are much

less forgiving when failures occur because the feedback loop between customer

and developer is very tight. From the developer’s perspective, this actually

increased the motivation to get things right in the release, even though process

friction was low.

In contrast, software with a high amount of friction in the distribution

mechanism is often more carefully tested before it is shipped. One subject we

interviewed recalled working for a company whose software was over 80 GB

in size and whose distribution model involved copying the software to a hard

disk and sending that disk to a customer site with a technician to assist in the

installation. In this scenario, shipping faulty software can require expensive

measures to correct, so the release process is much more controlled.

7.1.3 Interactions Between Releasable Components

The software we studied was often a collection of components, or had

strong dependencies upon other software packages. Because of this, the release

process of one component did not exist in a vacuum but was impacted by the

release processes and schedules of packages it was dependent upon. Likewise,

107

A B C D E F G H I
I x x x x x x
II x x x x x x x x x
III x x x x x x x
IV x x x x x x

Table 7.2: Cases and Theories Matrix

packages at the top of the hierarchy often coordinated with downstream con-

sumers to ensure compatibility and utility of their releases. Examples of these

interactions include RJD and the Subversion binaries, which both depend upon

upstream packages as inputs to their own release processes.

7.2 Theories of Release Engineering

From studying the cases presented in Chapter 5, we have developed the

following theories surrounding release engineering. While no process conforms

completely to each theory, these theories capture the essential elements of re-

lease engineering processes and problems in a way that is generally applicable.

The following areas of theory are supported by the case studies de-

scribed in Chapter 5. Not all case studies supported every theory, as some

interview subjects chose to focus more heavily on specific topics. Table 7.2

demonstrates which case studies supported which of the following ares of the-

ory.

108

1. Identify release components
2. Prepare release schedule
3. Test release components
4. Create release artifacts
5. Test release artifacts
6. Distribute or deploy release artifacts
7. Iterate during maintenance phase

Table 7.3: Common Release Steps

7.2.1 Theory: The Structure of Release Processes

Of the release processes studied, there emerged a pattern as to com-

mon steps involved in a generic release process. These steps are summarized

in Table 7.3 and discussed in more detail in the following sections. Not all re-

lease processes studied contain all these steps, ordering may not have strictly

followed this form, and many subjects may not even explicitly acknowledge

the steps, but this was the general form of a standard release process.

Each of these steps, and their relationship to the cases under study, are

discussed below.

7.2.1.1 Identify Release Components

Many of the case study subjects indicated their method of selecting

release components. Some, such as RJD tailored their release contents based

upon the availability of upstream components and the needs of downstream

users. Other organizations, like Connect and Publish, had release features

dictated by market needs. In other circumstances, such as occurred with

NetOS, special releases containing custom components were required for end

109

user testing.

In every case, however, some individual or entity decided what fea-

tures, subcomponents, or functionalities were to be part of the release. This

usually happened while the product was being developed, but in some cases

that are fully modular, such as RJD, release component selection could oc-

cur independent of developer activity. Additionally, some systems, like the

continuous deployment pipeline for Publish, allowed immature features to be

disabled prior to release, allowing maximum flexibility in determining what is

eventually presented to the user.

7.2.1.2 Prepare Release Schedule

After the release components were identified, every case under study

applied some type of scheduling metric to create those components. The sched-

ule may have been purely clock-based, as in the two-week cycles for Connect,

or variable such as with RJD. Even intermediate releases, such as the nightly

builds of NetOS were done on a specific schedule.

The one exception for the schedule strategy was the continuous release

pipeline described by the Publish release engineer. Because software is contin-

uously “flowing” through the pipeline to the production system, releases are

not orchestrated events.

110

7.2.1.3 Test Release Components

During development and during the release process, the various release

features and components are tested, sometimes using a continuous integration

system. This testing helps ensure components are functional and will be the

appropriate building blocks for a release. In modular systems, such as RJD

and some parts of Connect, once tested these components are archived for

later inclusion in the final release.

Some organizations rely upon other groups or entities to test subcom-

ponents, while only testing their own, such as with RJD. Other groups have

specific requirements about how these subcomponents are tested and made

available for testing further up the component stack. Connect is one exam-

ple of this type of organization, where underlying services are expected to

maintain a reliable level of service to facilitate testing.

7.2.1.4 Create Release Artifacts

Creating the actual release artifacts is one of the more variable steps

of the process, is highly dependent upon the software domain, and depends

on both the type of artifact created as well as the intended audience. For

most of the cases studied, the release artifacts consist of some binary object

or collection of objects with an intended target.

For processes with internal customers, the release artifacts are usually

targeted to a specific hardware and configuration platform. Indeed, one of

the failure modes mentioned in the ForRent payments system was a difference

111

in the expected hardware and a failure to deploy the correct configuration

information with the release artifact.

Processes with external customers, such as RJD, have to be more lib-

eral in the platforms they target and the variety of artifacts produced. The

release engineer for RJD produces and tests artifacts for a number of differ-

ent platforms, and in past iterations of the process this caused a significant

amount of additional work and resource usage.

Anecdotally from our studies, it appears the rise of the Software-as-a-

Service business paradigm means that more organizations are creating software

that ships to internal customers, which then impacts the release artifacts they

need to produce.

7.2.1.5 Test Release Artifacts

After the release artifacts are produced, they go through a series of

testing. The nature and scope of this testing varies widely among the processes

studied, as well as the people and methods used to perform the tests. Many

of the organizations studied in our cases use automatic testing tools to assist

with this testing effort, with manual intervention as required.

The focus and extent of the release artifact testing varied widely be-

tween the different cases. For example, the RJD team focuses their testing

on the artifacts and installation process, relying upon previously-completed

component testing to ensure the contents are valid.

Conversely, the NetOS release process involves a whole team of testers

112

employing both manual and automatic tests. In the case of the ForRent pay-

ments project, custom tests for new features are written as part of the release

process, while the artifacts are in the test and staging areas.

7.2.1.6 Distribute or Deploy Release Artifacts

Upon completion of testing, or some other method deemed to declare

the release artifacts suitable, the artifacts are then released or deployed. This

step also varies widely depending upon the business needs and software do-

main. In the instance of NetOS, this process consists of providing images to

manufacturing or making them available for end users to download. Company

A also provides RJD artifacts as a download for end users. These are typically

organizations with external customers, who require a self-contained package

to install or update the software.

For many of the software-as-a-service providers we studied, including

Connect, ForRent, and Publish, their customers are purely internal, so the

concept of releasing the software usually means promoting the artifacts to a

server with the ability to make changes to real user data. These organizations

may even use the same tools to move releases to production as they do through

other steps in the process, as is the case with ForRent.

Because there is increased friction, our observation is that organizations

with external customers have longer release cycles, as in the case of RJD and

NetOS. For these pieces of software, release failures are more costly, in that

creating a new release and redeploying it to end users can be an expensive and

113

time-consuming process.

Internal releases, while potentially much simpler, are not without their

own negative consequences. The interviewee from the ForRent payments

project mentioned that deploying to internal customers is less forgiving than

external customers because demands are high and the feedback in the case of

a release failure can be swift and harsh.

7.2.1.7 Iterate During Maintenance

Though not strictly part of the release process, most software organi-

zations, particularly those shipping to external customers, use a maintenance

phase. During this period, bug fixes and low-impact changes are made, but

new features are often withheld for the next major release. While possible in

some situations with internal customers, in our studies, we found the “release

branch” phenomenon to be a feature of RJD and NetOS—both of which are

systems with external customers.

7.2.2 Theory: Causes of Release Engineering Failures

Our theory of basic causes of release engineering failures as derived

from the preceding case studies is as follows:

1. Social issues are often the dominant cause of release failures.

2. Lack of automation and inappropriate tool support can hinder successful

release processes (and better tools can improve them).

3. Process complexity is the dominant internal product cause of release

114

failures.

7.2.2.1 Social Causes

While the release process can be highly dependent upon the architecture

of the software being released, failures in the release process are rarely due to

the software itself. Instead, failures can usually be attributed to configuration

issues, lack of communication, poor infrastructure or social problems within

the releasing organization.

Many of the individuals interviewed cited social issues as the root of

their release engineering failures. Release teams can vary from being tightly

integrated with developers, to operating on completely separate organizational

units and schedules. For those who are disjoint from the developers, it becomes

difficult for them to easily coordinate releases with the developers, which adds

additional friction and potential for failure in the release process.

Often, release managers trying to improve this problem are rebuffed by

their superiors who see little business sense in improving the project’s ability to

properly manage releases. One subject noted the lack of support and funding

to improve the release infrastructure as a serious detriment to her ability to

deliver proper releases.

This problem may also exist in open source communities, where par-

ticipants self-select tasks and may stop trying to improve release management

beyond some local optimum [29]. Each member of the team is satisfied with

the state of the release process and has little incentive to improve it, even

115

though such improvements may be generally useful to the project.

7.2.2.2 Automation and Tool Support

Effectively using tools to automate artifact creation helps to prevent

process failures from happening and recover after they do. Issue trackers,

version control systems, continuous integration and deployment systems all

play a role in helping to create a release. The ease of use of these tools, and

the extent to which they are put to use, can impact the quality and timeliness

of the release product. Interview subjects in Cases A, B, D, E and I all

discussed the impact of automation and tools on their processes.

The NetOS release engineer had recently switched version control sys-

tems and in doing so indicated that the switch allowed the team to better

control feature development and release. By improving the tools the release

engineer used, she was able to deliver more targeted releases in a more effective

manner, ultimately improving the quality of the software produced.

Many of these tools provide opportunities for scripting and automation

of release tasks. We found that of the cases studied, the amount of automa-

tion varied from fully-automated to processes that involved several manual

steps. The manual steps were often perceived as points of weakness, where

unintended process changes could enter, causing failures.

Several of the developers and release engineers we spoke with also ex-

pressed an interest in improving the automation of their systems, but they

mentioned the social issues associated with doing so, such as overcoming es-

116

tablished developer habits and convincing management of the profitability of

the improvement. In many cases, project management was hesitant to invest

the required resources to improve the release process automation. Although

the benefits were readily apparent to the release engineering staff, such im-

provements were difficult to sell to higher layers of management.

Finally, a high amount of tooling and automation helps make the release

process and artifacts reproducible. Several of the release engineers we spoke

with emphasized the need to be able to reproduce a given release artifact on

demand, primarily for debugging or recovery purposes. Some of the subject

organizations had such an ability and went to great lengths to maintain it,

while others lamented the fact they did not, and such had been the cause of

problems in their organizations.

7.2.2.3 Process Complexity

Process complexity, usually a result of the software architecture (as

described below) often led to process failures, either directly or by incentivizing

participants to skip or alter steps. In cases such as NetOS, processes with

many steps and participating individuals sometimes led to perceived special

circumstances during a release, and these perceptions justified altering the

established release process.

When such process deviations occur, they often have to be done man-

ually, since no automation support exists for them. This manual intervention

leads to increased ability for human error to affect process validity and more

117

opportunities for process failure. Combined with the obvious issues of omitting

important steps, process alteration leads to a high probability of failure.

To counter this type of problem, several of the release engineers we

spoke to suggested a simpler process, with few steps and actors, along with a

more modular software architecture, would help to solve these issues. However,

they noted that instituting simpler process was itself a difficult proposition,

given existing institutional inertia for the current system.

7.2.3 Theory: Relationship Between Architecture and Process Com-
plexity

Our theory regarding the relationship between software architecture

and process design and complexity is as follows:

1. Monolithic architectures induce complex release processes.

2. Modular, loosely-coupled architectures allow much simpler, possibly in-

cremental, release processes.

3. Modular architectures may still develop cross-component dependencies

that necessitate an all-in-one release process.

Many of the organizations and individuals we spoke with described their

software release as being heavily tied to the architecture of the system. This

relationship is analogous to the long held belief that communication structures

often mirror the organizations that generate them, also known as Conway’s

Law [11].

118

Systems that exhibited a large, tightly-coupled design and code base

often require large and complex release processes since many modules of the

code are interdependent. This interdependence practically dictates that release

processes are highly coordinated affairs, requiring large amounts of effort, in-

volving many individuals, and only occurring with low frequency. They can

also be high-risk efforts, as a failed release results in the sunk cost of a large

amount of resources.

In contrast, a smaller, more modular software system with fewer in-

terdependencies often requires less effort to release, leading to more frequent

releases and individual releases of various subcomponents of the entire system.

This often resembles the agile software development methodology, which en-

courages modular features and incremental releases [22]. Anecdotal evidence

of this phenomenon is observable in open source ecosystems where the mantra

“release early, release often” historically correlates with small, modular soft-

ware components and rapid release cycles [38].

Loosely-coupled systems are not without their own risks during release,

however, as compatibility interfaces must be maintained and supported for use

by older dependent components. The design of these interfaces, as well as their

continued maintenance can introduce significant overhead in the development

process, even though it may make releases easier to perform.

Likewise, cross-module dependencies may evolve in complex feature

scenarios, thus breaking down the interfaces between modules and negating

the benefits of a more modular software architecture. As the ForRent subject

119

put it: “you still end up releasing everything all at once, because that’s the

only way you know that everything works together.”

The trend in several of the cases we studied was to move toward more

modular architectures, with one of the perceived benefits of being more flex-

ibility in their release process. Each of the interview subjects in these cases

hoped that a more modular process would improve both the technical aspects

of creating artifacts, and the social aspects of fixing faults and issuing sub-

sequently improved releases. Interestingly, this contrasts with a well-known

example of a move to a monolithic architecture and the complications arising

therefrom [44].

7.2.4 Theory: Process Improvement

Our theory of release process improvement as derived from our case

studies can be summarized as follows:

1. Release processes can be improved through modularization of both the

process itself and the software architecture.

2. Organizations recognize these facts, but implementing improvements is

often difficult for technical or social reasons.

Most of the interview subjects we spoke to had recently been through,

or were currently experiencing an attempt to improve their release process,

with mixed amounts of success. From our interviews, there appears to be a

sense that release engineering can be a pain point within an organization, and

that concerted effort is required to improve it.

120

The NetOS release engineer took a different approach, pragmatically

recognizing the limitations of process improvement: “People keep trying to

make software development easy; I don’t think it’s ever going to be easy.”

Even with this attitude, she was supportive of her organization’s efforts to

rearchitect their system in an attempt to improve both development and re-

lease processes. In other words, she felt that product improvement would also

result in process improvement.

The improvements to the RJD process resulted in one which was more

modular, in that the process itself could be started and stopped in known

states. As a distribution of packages, the RJD release manager tests and

stores known-good packages for later use in building an artifact, rather than

performing all steps of the release sequentially at one time. This may add some

complexity, but also improved the ability of RJD to build release artifacts in

a timely manner.

The results of these process improvements have largely been positive.

The RJD team was able to decrease the amount of resources required to create

a release, while at the same time increasing test coverage. In the case of

NetOS, the change in version control tools has allowed the release engineers to

better plan and manage the contents of releases, thought some problems still

remain. The continuous release pipeline of the Publish team resulted in an

improvement in the time-to-release, with the hopes that such improvements

will continue as the system matures.

121

Chapter 8

Conclusion

This dissertation has presented work relevant to the area of release

engineering. Specifically, we have outlined a series of case studies conducted

via semi-structured interview and the resulting analysis of those interviews,

which show ways that release processes are commonly structured, how they

often fail, and how organizations recover from these failures.

This work is significant for several reasons: release engineering processes

have wide-reaching effects on the overall quality of a software product; release

processes are a critical, but often overlooked part of the software life-cycle; and

an understanding of common process failure modes will help prevent them,

improving software quality and decreasing development costs. The goal of

this dissertation, then, has been to increase both the state of the art, and the

state of the practice.

In conclusion, we outline the research contributions, potential future

work in this important research area, as well as three recommendations to

practicing release engineers based upon the results of our studies. We believe

that our work provides a solid foundation for both future researchers and

practicioners to build upon.

122

8.1 Contributions

This dissertation addresses the following research questions:

I What is the common form of release processes?

II What process faults and failures commonly occur?

III What strategies or techniques can help prevent these faults and failures

in the future?

These questions address areas of concern for both practicing release

engineers as well as software engineering researchers. To gain insight into

these areas, our case study interviews focused on these subjects with practic-

ing release engineerers. The results of this work are four theories of release

engineering, specifically:

I The structure of release engineering processes

II Common release engineering failure modes

III The relationships between software architecture and release processes

IV Release process improvement

These theories develop a framework for reasoning about release engi-

neering processes as well as practical knowledge that can be applied by release

engineers currently in industry.

123

8.2 Future Work

The work described in this dissertation does not seek to be the final

word on the topic of release engineering or release processes and management.

While answering some important questions, several additional areas of poten-

tial research have become apparent, and I feel that these are worth mentioning

here. Some of these include the use of formal process analysis to better under-

stand release process structure and efforts to assist in process standardization.

8.2.1 Formal Process Analysis

Our work has primarily focused on qualitative measures of release pro-

cesses, and our early results demonstrate that release processes vary widely

across organizations. Our interviews have indicated a need for more formal

quantitative methods for reviewing, comparing, and analyzing release pro-

cesses. Process modeling languages, such as Little-JIL [47] or Interact [36],

may prove useful to aid in reasoning about process interactions and proper-

ties [32]. However, due to release process complexity, capturing a complete

release process with its many exceptions may require significant resources.

Release process modeling and analysis would also benefit from an un-

derstanding of where release engineering fits in the comprehensive software

development cycle [33]. Such process unification would be beneficial to both

release engineers, and those who look to integrate their efforts into a wider

development process.

124

8.2.2 Process Standardization

As release processes continue to evolve and change, some degree of

standardization among them will occur. Future research into release processes

can assist such standardization before bad practices become entrenched and

difficult to dislodge.

Process standardization could also help to encourage a set of best prac-

tices for the release engineering industry. Such knowledge is currently buried

within organizations, with very little ability for discussion and learning across

release groups. Developing a repository for release process information could

help these groups better communicate and standardize their processes.

8.3 Recommendations

Based upon our interviews and analysis, we present the following three

areas, which release engineers and their managers can explore to improve re-

lease process, reducing failures and their attendant costs. Broadly, these areas

are increased automation, more modular process design, and simpler processes

with more external support of release engineering teams. While none of these

changes may be easy to adopt in a particular organization, our research indi-

cates they will yield long-term benefits.

The end result of these recommendations is to decrease friction in the

release process, allowing for more frequent releases, which helps to negate

transitory faults in the release process. If releases are occurring at regular and

125

frequent intervals, recovering from problems may often be simply a case of

waiting until the next release is due.

8.3.1 Improved Automation

Almost all of the subjects we interviewed cited automated tooling as

a method they have used to improve their processes, while those who did

not expressed a desire to do so. Automating release processes ensures that

all the steps in the process have been appropriately captured in a repeatable

way, so that artifacts can be reproduced in a reliable fashion. This suggestion

does not claim to dictate which tools should be used or how they should be

implemented, only that organizations should strive for as much automation as

possible.

By automating the process, an organization also makes releasing eas-

ier, reducing the friction of a release and increasing the potential for more

frequent releases. Even if these artifacts are not provided to consumers, creat-

ing a “push-button” release process helps engineers practice the art of creat-

ing release artifacts. Frequent artifact generation also allows for more frequent

testing of the release artifacts, helping find packaging and integration problems

outside of a typical release cycle.

Automation also serves to capture assumptions in the process, helping

ensure that all the institutional knowledge related to the process of creating

a release artifact is captured. While automation is not a replacement for

adequate documentation and training, it does supplement them. Automation

126

may also allow release engineering resources to be better utilized in handling

other aspects of the release process.

8.3.2 Modular Process Design

Likewise, improving the software architecture was often mentioned by

our interview subjects as a goal of their organization. For instance, the NetOS

team is currently involved in a major effort to introduce a more loosely-coupled

system, in part to improve the release experience. These groups hope that

smaller releasable pieces of a larger system will allow individual components,

features, and fixes to reach the hands of their users more quickly.

Modularity comes at a cost, including the effort required to maintain

stable interfaces between components. However, while the introduction of

these well-defined interfaces and module boundaries requires developer disci-

pline and effort, we feel, as did our interview subjects, that such effort will be

rewarded by improved release processes.

8.3.3 Improved Organizational Support

Perhaps the most important recommendation to improve release pro-

cesses is to improve the organizational support for release engineering. Release

process improvements often come as a result of long-term application of dis-

cipline and resources and may lack the immediate payoff resource allocators

within a company desire. At the same time, market and business forces may

dictate that investing in release engineering personnel and infrastructure is not

127

currently tenable.

However, for organizations that are in a position to do so, they would

be well-served by making the effort to improve both the tools and resources

available to release engineering teams.

128

Appendices

129

Appendix A

130

Pre-Interview Questionnaire

“Release Engineering Faults and Failures”
Pre-Interview Questionnaire

Thank you for your willingness to participate in this research study. I look forward to
visiting with you either in person, or via teleconference. In preparation for our interview,
please consider the following questions regarding your experiences with your productʼs
release management procedures. You do not have to return this document; it will be
used as the basis for our interview. As previously disclosed, all responses will be
appropriately anonymized prior to any publication.

Definitions:
- Release Process: the part of the software lifecycle from when a product is declared

“feature complete” and when it is actually deployed or shipped.
- Process Failure: A failure to follow established processes procedures, whether

documented or undocumented (traditional). In other words, a deviation from existing
process

- Process Fault: A deficiency in the process itself. Process faults represent
opportunities for process improvement in future iterations.

I. What are the typical release processes in your organization?
A.Who participates?
B.What steps are involved?
C.What is the approximate timeline?

II.What are some instances when your organization encountered process failures
during the release process?

A.What prior plans were made for working around these failures?
B.Why did these failures occur?
C.What tools or personnel were involved in recovering from the failures?

III.What are some instances when your organization encountered process faults during
the release process?

A.How did the faulty process impact the release?
B.What changes did you make after the release to prevent a similar experience?
C.Who was responsible for identifying and implementing these changes?

131

Appendix B

Sample Subject Solicitation Mail

To: xxxx@apache.org

From: xxxx@xxxxx.org

Subject: Soliciting Release Engineering experiences

Date: 17 May 2011

Hello fellow ASFers:

I’m in the midst of doing a research project on release

engineering. As part of the research, I’m collecting

information about release processes, and how those processes

fail, either via technical or human means. To do so, I am

interviewing release managers / engineers from both open

source and proprietary development organizations.

If you are a release manager, or know somebody that works

in release management / engineering for you project or

company, I’d be interested in interviewing you. The

interview shouldn’t last more than an hour, and can be

132

scheduled at your convenience. All results will be properly

anonymized prior to publication, and would be welcome to

review them. (I’m hoping to interview two individuals from

each organization, but one-man groups are also of interest.)

Please contact me off-list if you are interested in

participating or have additional questions.

Thanks,

-Hyrum

133

Bibliography

[1] Apache Subversion. http://subversion.apache.org/.

[2] Choosing the FreeBSD Version That Is Right For You. http://www.

freebsd.org/doc/en/articles/version-guide/.

[3] Hacker’s Guide to Subversion. http://subversion.tigris.org/hacking.

html.

[4] Subversion Merge Tracking Notes. http://subversion.tigris.org/

merge-tracking/.

[5] Barry W. Boehm. Software engineering economics. Software Engineer-

ing, IEEE Transactions on, SE-10(1):4 –21, jan. 1984.

[6] Barry W. Boehm. A spiral model of software development and enhance-

ment. Computer, 21(5):61–72, 1988.

[7] I.T. Bowman, R.C. Holt, and N.V. Brewster. Linux as a case study: Its

extracted software architecture. In Proceedings of the 21st international

conference on Software engineering, pages 555–563. ACM, 1999.

[8] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a

case study: its extracted software architecture. In Proceedings of the

134

21st international conference on Software engineering, ICSE ’99, pages

555–563, New York, NY, USA, 1999. ACM.

[9] Pär Carlshamre. Release planning in market-driven software product

development: Provoking an understanding. Requirements Engineering,

7:139–151, 2002.

[10] M. Cataldo and J.D. Herbsleb. Factors leading to integration failures in

global feature-oriented development: an empirical analysis. In Proceeding

of the 33rd international conference on Software engineering, pages 161–

170. ACM, 2011.

[11] M.E. Conway. How do committees invent? Datamation, 14(4):28–31,

1968.

[12] J. Corbet. Waiting for Emacs 22. http://lwn.net/Articles/234593/,

2007.

[13] K. Crowston and J. Howison. The social structure of free and open source

software development. First Monday, 10(2), 2005.

[14] M. Diaz and J. Sligo. How software process improvement helped mo-

torola. Software, IEEE, 14(5):75–81, sep/oct 1997.

[15] Tadashi Dohi, Yasuhiko Nishio, and Shunji Osaki. Optimal software

release scheduling based on artificial neural networks. Annals of Software

Engineering, 8:167–185, 1999.

135

[16] Justin R. Erenkrantz. Release Management Within Open Source Projects.

In Proceedings of the ICSE 3rd Workshop on Open Source Software En-

gineering, May 2003.

[17] Roy T. Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, University of California, 2000.

[18] Eliyahu M. Goldratt. Essays on the Theory of Constraints. North River

Press, 1998.

[19] R.E. Grinter, J.D. Herbsleb, and D.E. Perry. The geography of coordi-

nation: dealing with distance in r&d work. In Proceedings of the inter-

national ACM SIGGROUP conference on Supporting group work, pages

306–315. ACM, 1999.

[20] R.S. Hall, D. Heimbigner, André van der Hoek, and Alexander L. Wolf.

The Software Dock: A Distributed, Agent-based Software Deployment

System. Technical Report CU-CS-832-97, University of Colorado, Dept.

of Computer Science, February 1997.

[21] Donald E. Harter, Mayuram S. Krishnan, and Sandra A. Slaughter. Ef-

fects of process maturity on quality, cycle time, and effort in software

product development. Management Science, 46(4):pp. 451–466, 2000.

[22] Jim Highsmith. Agile software development ecosystems. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2002.

136

[23] R.H. Hou, S.Y. Kuo, and Y.P. Chang. Optimal release times for soft-

ware systems with scheduled delivery time based on the HGDM. IEEE

Transactions on Computers, 46(2):216–221, 1997.

[24] C.Y. Huang and M.R. Lyu. Optimal release time for software systems

considering cost, testing-effort, and test efficiency. IEEE transactions on

reliability, 54(4):583–591, 2005.

[25] Yiu-Wing Leung. Optimum software release time with a given cost bud-

get. Journal of Systems and Software, 17(3):233 – 242, 1992.

[26] K. D. Levin and O. Yadid. Optimal release time of improved versions

of software packages. Information and Software Technology, 32(1):65–70,

1990.

[27] A.D. MacCormack, J. Rusnak, C.Y. Baldwin, and Harvard Business School. Di-

vision of Research. Exploring the structure of complex software designs:

An empirical study of open source and proprietary code. Management

Science, 52(7):1015, 2006.

[28] Martin Michlmayr. Quality Improvement in Volunteer Free Software

Projects: Exploring the Impact of Release Management. In Proceedings

of the First International Conference on Open Source Systems, pages 309–

10, 2005.

[29] Martin Michlmayr. Quality Improvement in Volunteer Free Software

Projects: Exploring the Impact of Release Management. PhD thesis,

137

University of Cambridge, 2007.

[30] Martin Michlmayr, F. Hunt, and D. Probert. Release Management in

Free Software Projects: Practices and Problems. International Federa-

tion for Information Processing, 234:295, 2007.

[31] Kazu Okumoto and Amrit L. Goel. Optimum release time for software

systems based on reliability and cost criteria. Journal of Systems and

Software, 1:315–318, 1980.

[32] Lee Osterweil. Modeling processes to effectively reason about their prop-

erties. In Proceedings of the ProSim ’03 Workshop, 2003.

[33] Lee J. Osterweil. Unifying microprocess and macroprocess research. In

Unifying the Software Process Spectrum, Lecture Notes in Computer Sci-

ence, pages 68–74. Springer Berlin / Heidelberg, 2006.

[34] J.W. Paulson, G. Succi, and A. Eberlein. An empirical study of open-

source and closed-source software products. Software Engineering, IEEE

Transactions on, 30(4):246–256, 2004.

[35] D.E. Perry, H.P. Siy, and L.G. Votta. Parallel changes in large-scale soft-

ware development: an observational case study. ACM Transactions on

Software Engineering and Methodology (TOSEM), 10(3):308–337, 2001.

[36] Dewayne E. Perry. Enactment control in interact/intermediate. Software

Process Technology, pages 107–113, 1994.

138

[37] Dewayne E. Perry and C. Stieg. Software faults in evolving a large, real-

time system: a case study. Software Engineering–ESEC’93, pages 48–67,

1993.

[38] Eric S. Raymond. The Cathedral and the Bazaar. Knowledge, Technol-

ogy, and Policy, 12(3):23–49, 1999.

[39] J.W. Reeves. What is software design. C++ Journal, 2(2), 1992.

[40] R. Rosenthal and R. Rosnow. Essentials of behavioural research. Mc-

Graw, 1991.

[41] W. W. Royce. Managing the development of large software systems: con-

cepts and techniques. In Proceedings of the 9th International Conference

on Software Engineering, pages 328–338. IEEE Computer Society Press

Los Alamitos, CA, USA, 1987.

[42] S. Sawyer. Packaged software: implications of the differences from cus-

tom approaches to software development. European Journal of Informa-

tion Systems, 9(1):47–58, 2000.

[43] John Stark. Product lifecycle management. In Product Lifecycle Man-

agement, Decision Engineering, pages 1–16. Springer London, 2011.

[44] Nancy A. Staudenmayer. Managing multiple interdependencies in large

scale software development projects. PhD thesis, Massachusetts Institute

of Technology, 1997.

139

[45] André van der Hoek, R. S. Hall, D. Heimbigner, and Alexancer. L. Wolf.

Software release management. ACM SIGSOFT Software Engineering

Notes, 22(6):159–175, 1997.

[46] Michiel van Genuchten. Why is software late? an empirical study of rea-

sons for delay in software development. IEEE Transactions on Software

Engineering, 17(6):582–590, 1991.

[47] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, Lee J. Osterweil, and

S. M. Sutton Jr. Using little-jil to coordinate agents in software engi-

neering. In Proceedings of the Fifteenth IEEE International Conference

on Automated Software Engineering, pages 155–163. IEEE, 2000.

[48] Alexander L. Wolf and David S. Rosenblum. A Study in Software Process

Data Capture and Analysis. In Proceedings of the Second International

Conference on the Software Process, pages 115–124, 1993.

[49] Hyrum K. Wright, Miryung Kim, and Dewayne E. Perry. Validity Con-

cerns in Software Engineering Research. In Proceedings of the Workshop

on the Future of Software Engineering Research, November 2010.

[50] Hyrum K. Wright and Dewayne E. Perry. Subversion 1.5: A Case Study

in Open Source Release Mismanagement. In Proceedings of the ICSE 2nd

Emerging Trends in FLOSS Research and Development Workshop, May

2009.

140

[51] S. Yamada and S. Osaki. Cost-reliability optimal release policies for soft-

ware systems. Reliability, IEEE Transactions on, 34(5):422–424, 2009.

[52] R. Yin. Case study research: Design and methods. Sage Pubns, 2008.

141

