
Release Engineering Practices and Pitfalls

Hyrum K. Wright and Dewayne E. Perry
Dept. of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas

hyrum wright@mail.utexas.edu, perry@ece.utexas.edu

Abstract—The release and deployment phase of the software
development process is often overlooked as part of broader
software engineering research. In this paper, we discuss early
results from a set of multiple semi-structured interviews
with practicing release engineers. Subjects for the interviews
are drawn from a number of different commercial software
development organizations, and our interviews focus on why
release process faults and failures occur, how organizations
recover from them, and how they can be predicted, avoided
or prevented in the future. Along the way, the interviews
provide insight into the state of release engineering today,
and interesting relationships between software architecture and
release processes.

Keywords-release engineering; software process

I. INTRODUCTION

Release engineering is one of the least studied areas in
software engineering, yet to be useful all software projects
must create releases. As software systems and their develop-
ment processes grow more complex, so do release processes.
Release processes are as diverse as the software projects
they support, from small collections of related tools, to
large complex software systems. Fundamentally, though, the
experience of releasing software is common to all software
development organizations.

Release processes are not perfect, however, and under-
standing release engineering processes, their faults and fail-
ures, can be especially important for a quality software
engineering experience. Release teams often operate under
great external pressure, and failure during the release process
can have a large impact on project success. Understanding
how these teams operate, what causes their activities to break
down, and how they recover from them will help future
practitioners avoid the same problems.

This paper describes our early results after performing a
series of semi-structured interviews with several practicing
release engineers. The software these individuals work on,
and the release processes they use vary extensively, but the
interviews have given us insight into what influences release
process design. Additionally, the interviews have looked at
failures in release processes, and how those failures can be
avoided in the future.

II. BACKGROUND

Release engineering has not historically received very
much attention in the software engineering research commu-
nity. There have been piecemeal efforts to describe various
aspects of release, but nothing holistic. Even the definition of
“release engineering” is not very well articulated. This sec-
tion outlines our working definition for release engineering
and processes, as well as selected prior work in the area.

This work is not the first effort to examine project release
processes, but does have a much wider scope than previous
studies. Both Erenkrantz and Wright examined the release
processes of specific software projects [1], [2]. Other work
attempted to mine the version control system and bug tracker
for a single project to develop a release history for that
project [3].

There have been several quantitative studies on optimal
software release timing [4], [5], [6], but these usually
use various models of fault density and development rates
which in practice can exhibit a high amount of variance.
Additionally, these techniques require as input development
and fault models which are difficult to develop and rarely
readily available. Process discovery techniques also require
inputs, such as event streams [7], but unfortunately, such
streams are largely unpublished—or simply nonexistent—
for release processes.

In contrast, our work takes a more qualitative approach
by interviewing the actual people involved with software
releases in practice. We feel this lends the necessary “mun-
dane realism” to our results which may be lacking in more
generalized quantitative approaches.

In addition to practical experience managing releases for
widely-used software projects, some of our own previous
work in this area involved the attempt to generalize a solu-
tion to automatically collect release history information from
software repositories [8]. That method proved to require
a large degree of individual and specialized attention for
each project, leading us to believe that the more qualitative
approach discussed in this paper is a more practical next
step.

Other empirical work has looked at feature-driven devel-
opment and the impact technical and organizational factors
have on integration failures [9]. In such an environment,

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
New Ideas and Emerging Results

1281

Table I
INTERVIEW SUBJECTS

Label Software Type
A Hosted web application
B Network router control software
C Behind-the-firewall web application
D Open source tools distribution

integration is an important part of the release engineering
process, and this work supports our own.

In addition, many of these projects only record a single
aspect of the release process, such as its history or fault
levels. The work described in this paper indicates that release
processes are much richer than can be captured via automatic
means or quantitative analysis methods. Such techniques are
useful, but process discovery often requires interaction with
participants, such as we describe here. As such, our work
paints a more holistic picture of the release process and its
potential pitfalls.

III. METHODOLOGY

Our initial work focuses on a set of semi-structured
interviews with practicing release engineers at a variety of
software development companies. These initial results come
from four such interviews, though we have performed more
and are in the midst of analyzing them. Due to the open-
ended nature of our work, we chose to use a grounded
theory approach, and will continue to interview until we
feel we have reached an appropriate level of saturation [10].
The subjects were recruited by soliciting contacts from the
professional networks of the researchers, as well as sending
inquiries to release engineering-based industry groups.

From this pool of people, we scheduled one-hour inter-
views, which were conducted in person or via phone and
recorded. Prior to the interviews, we provided each subject
with a brief questionnaire to seed the interview process. A
list of selected interview subjects, as well as the type of
software they are responsible for releasing are shown in
Table I. When possible we attempted to interview multiple
individuals from the same software development organiza-
tion. In many cases, however, this proved impractical, often
because there was only one individual in an organization
who managed the release process.

These interviews are currently ongoing, but our initial
analysis highlights several themes that are common to re-
lease processes and their failures. These include relation-
ships between release processes and software architecture,
social causes of release problems, and the relationship that
tools and software domain have on release process design.

A. Data sources

Software engineering researchers tend to over-emphasize
open source projects and data when doing empirical re-
search [11]. In order to avoid this problem, we attempted

to ensure a large set of subjects on proprietary software
development organizations were included in our pool. While
this technique presents some logistical challenges, we feel
it better portrays the state of software development today.

To reach as many potential release engineers as possible,
we sent requests to various software development mailing
lists, and used our own networks of professional connections
to find individuals to interview. This method obviously
suffers from various kinds of biases, such as self-selection,
but we feel it gives sufficient variety to lend validity to the
results.

Our initial group of interview subjects spans a range of
software domains and development methods, from small
“agile” teams which release frequently to large organizations
which only create occasional release artifacts. Similarly, the
artifact distribution models ranged from shipping to internal
corporate customers in a controlled hosted environment, to
sending a hard disk with 80GB of software updates with a
technician to a customer site.

Each of our subjects fell into one of two self-identifying
categories: a dedicated release engineer whose primary re-
sponsibilities were on release and deployment; or a member
of a development team who was also responsible for that
team’s release activities. Insights from both groups were
useful, with many common themes present.

IV. DISCUSSION

Our analysis of the interviews performed presents several
ideas that we feel are interesting and ripe for future research.
These include the relationship between software architecture
and release processes, the risks and rewards of various
release strategies, the social problems associated with pro-
ducing an effective release process and the relationship
between the type of software being shipped and the release
process.

A. Software Architecture and Release

Many of the organizations and individuals we spoke with
described their software release as being heavily tied to the
architecture of the system. This relationship is analogous to
the long held belief that communications structures often
mirror the organizations which generate them, also known
as Conway’s Law [12].

Systems that exhibited a large, tightly-coupled design and
code base often require large and complex release processes,
since many modules of the code are interdependent. This
interdependence practically dictates that release processes
are highly coordinated affairs, requiring large amounts of
effort and involving many individuals, and only occurring
with low frequency. They can also be high-risk efforts, as a
failed release results in the sunk cost of a large amount of
resources.

In contrast, a smaller, more modular software system with
fewer interdependencies often requires less effort to release,

1282

leading to a more frequent releases, and individual releases
of various subcomponents of the entire system. This often re-
sembles the agile software development methodology, which
encourages modular features and incremental releases [13].
Anecdotal evidence of this phenomenon is observable in
open source ecosystems where the mantra “release early,
release often” historically correlates with small, modular
software components and rapid release cycles [14].

Loosely coupled systems are not without their own risks
during release, however, as compatibility interfaces must
be maintained and supported for use by older dependent
components. The design of this interfaces, as well as their
continued maintenance can introduce significant overhead in
the development process, even though it may make releases
easier to perform.

B. Social Causes of Release Failure

While the release process can be highly dependent upon
the architecture of the software being released, failures in the
release process are rarely due to the software itself. Instead,
failures can usually be attributed to configuration issues, lack
of communication, poor infrastructure or social problems
within the releasing organization.

Many of the individuals interviewed cited social issues as
the root of their release engineering failures. Release teams
can vary from being tightly integrated with developers, to
operating as completely separate organizational units and
on disparate schedules. For those who are disjoint from the
developers, it becomes difficult for them to easily coordinate
releases with the developers, which adds additional friction
and potential for failure in the release process.

Often, release managers trying to improve this problem
are rebuffed by their superiors who see little business
sense in improving the project’s ability to properly manage
releases. One subject noted the lack of support and funding
to improve the release infrastructure as a serious detriment
to her ability to deliver proper releases.

These social problems may also exist in open source
communities, where participants self-select tasks, and may
stop trying to improve release management beyond some
local optimum [15]. Each member of the team is satisfied
with the state of the release process, and has little incentive
to improve it, even though such improvements may be
generally useful to the project.

C. Software Domain and Tools

Other aspects of a software project which affects its
release process are the domain of the software, including
its usage model, and the development tools used to build
and track the release environments and artifacts.

Several of the subjects we talked to produced software
for in-house customers or deployment to servers controlled
by their organization. Shipping to an in-house organization
often means developers can release multiple times in a

short period, even several times a day. This requires a low-
overhead release process, but also allows for occasional
process failures, as restarting the process is not a high-cost
activity.

In contrast, software with a high amount of friction in the
distribution mechanism tends to be more carefully tested
before it is shipped. One subject we interviewed worked for
a company whose software was over 80 GB in size, and
whose distribution model involved copying the software to
a hard disk and sending that disk to a customer site with
a technician to assist in the installation. In this scenario,
shipping faulty software can require expensive measures to
correct, so the release process is much more controlled.

The tools release managers use also impact their process
and ability to recover from process problems. Issue trackers
and version control systems, continuous integration and
deployment systems all play a role in helping to create
a release. The ease of use of these tools, and the extent
to which they are put to use, can impact the quality and
timeliness of the release product.

One release engineer had recently switched version con-
trol systems and in doing so indicated that the switch allowed
the team to better control feature development and release.
By improving the tools the release engineer used, she was
able to deliver more targeted releases in a more effective
manner, ultimately improving the quality of the software
produced.

The foregoing themes all present an interesting discussion
of some of the variables that affect release processes, but we
have yet to discover methods of preventing release process
failures. We anticipate that as our studies proceed with
transcription and coding, additional insights will emerge as
to the ways that organizations avoid process problems.

V. FUTURE RESEARCH DIRECTIONS

Based up on the preliminary work described above, we
envision a future research direction including a number of
related questions. These include the use of formal process
analysis to better understand release process structure and
efforts to assist in process standardization.

A. Formal Process Analysis

Our work has primarily focused on qualitative measures
of release processes, and our early results demonstrate that
release processes vary widely across organizations. Our
interviews have indicated a need for more formal quan-
titative methods for reviewing, comparing, and analyzing
release processes. Process modeling languages, such as
Little-JIL [16] or Interact [17], may prove useful to aid
in reasoning about process interactions and properties [18].
However, due to release process complexity, capturing a
complete release process, with its many exceptions, may
require significant resources.

1283

Release process modeling and analysis would also benefit
from an understanding of where release engineering fits in
the comprehensive software development cycle [19]. Such
process unification would be beneficial to both release
engineers, as well as those who look to integrate their efforts
into a wider development process.

B. Process Standardization

As release processes continue to evolve and change, some
degree of standardization among them will occur. Future
research into release processes can assist such standardiza-
tion before bad practices become entrenched and difficult to
dislodge.

Process standardization could also help to encourage a
set of best practices for the release engineering industry.
Such knowledge is currently buried within organizations,
with very little ability for discussion and learning across
release groups. Developing a repository for release process
information could help these groups better communicate and
standardize their processes.

VI. CONCLUSION

This paper presents some of our early research ideas
surrounding release processes, their faults and failures. We
discuss an set of semi-structured interviews with practicing
software release engineerings from a number of difference
commercial software development organizations, and some
of the early themes detected in these interviews. Some of
these themes include the relationship between software ar-
chitecture and release process, the impact of tools on release
processes, and social issues surrounding release failures.

While specific common process failure modes are not
yet clearly evident, the early results from these interviews
provide some interesting direction as to future research
areas. These include more thorough process analysis and
efforts at process standardization. We hope our continued
research can address these issues, and ultimately improve
the state of the practice of release engineering.

REFERENCES

[1] J. R. Erenkrantz, “Release Management Within Open Source
Projects,” in Proceedings of the ICSE 3rd Workshop on Open
Source Software Engineering, May 2003.

[2] H. K. Wright and D. E. Perry, “Subversion 1.5: A Case Study
in Open Source Release Mismanagement,” in Proceedings
of the ICSE 2nd Emerging Trends in FLOSS Research and
Development Workshop, May 2009.

[3] M. Fischer, M. Pinzger, and H. Gall, “Populating a re-
lease history database from version control and bug tracking
systems,” in ICSM ’03: Proceedings of the International
Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2003, p. 23.

[4] H. Koch and P. Kubat, “Optimal release time of com-
puter software,” Software Engineering, IEEE Transactions on,
no. 3, pp. 323–327, 2006.

[5] Z. Jiang and S. Sarkar, “Optimal Software Release Time with
Patching Considered,” in Proceedings of 13th Annual Work-
shop on Information Technologies and Systems December,
2003, pp. 13–14.

[6] K. D. Levin and O. Yadid, “Optimal release time of improved
versions of software packages,” Information and Software
Technology, vol. 32, no. 1, pp. 65–70, 1990.

[7] J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” ACM Trans. Softw. Eng.
Methodol., vol. 7, pp. 215–249, July 1998. [Online].
Available: http://doi.acm.org/10.1145/287000.287001

[8] J. Tsay, H. Wright, and D. Perry, “Experiences mining
open source release histories,” in International Conference on
Software and Systems Process (ICSSP 2011), 05/2011 2011.

[9] M. Cataldo and J. Herbsleb, “Factors leading to integration
failures in global feature-oriented development: an empirical
analysis,” in Proceeding of the 33rd international conference
on Software engineering. ACM, 2011, pp. 161–170.

[10] B. Glaser, Doing grounded theory: Issues and discussions.
Sociology Press Mill Valley, CA, 1998, vol. 254.

[11] H. K. Wright, M. Kim, and D. E. Perry, “Validity Concerns
in Software Engineering Research,” in Proceedings of the
Workshop on the Future of Software Engineering Research,
November 2010.

[12] M. Conway, “How do committees invent?” Datamation,
vol. 14, no. 4, pp. 28–31, 1968.

[13] J. Highsmith, Agile software development ecosystems.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002.

[14] E. Raymond, “The Cathedral and the Bazaar,” Knowledge,
Technology, and Policy, vol. 12, no. 3, pp. 23–49, 1999.

[15] M. Michlmayr, “Quality Improvement in Volunteer Free Soft-
ware Projects: Exploring the Impact of Release Management,”
Ph.D. dissertation, University of Cambridge, 2007.

[16] A. Wise, A. Cass, B. Lerner, E. McCall, L. Osterweil, and
S. Sutton Jr, “Using little-jil to coordinate agents in software
engineering,” in Proceedings of the Fifteenth IEEE Inter-
national Conference on Automated Software Engineering.
IEEE, 2000, pp. 155–163.

[17] D. Perry, “Enactment control in interact/intermediate,” Soft-
ware Process Technology, pp. 107–113, 1994.

[18] L. Osterweil, “Modeling processes to effectively reason about
their properties,” in Proceedings of the ProSim ’03 Workshop,
2003.

[19] L. Osterweil, “Unifying microprocess and macroprocess re-
search,” in Unifying the Software Process Spectrum, ser.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006, pp. 68–74.

1284

